On the Parameterized Complexity of the Maximum Edge Coloring Problem


Abstract in English

We investigate the parameterized complexity of the following edge coloring problem motivated by the problem of channel assignment in wireless networks. For an integer q>1 and a graph G, the goal is to find a coloring of the edges of G with the maximum number of colors such that every vertex of the graph sees at most q colors. This problem is NP-hard for q>1, and has been well-studied from the point of view of approximation. Our main focus is the case when q=2, which is already theoretically intricate and practically relevant. We show fixed-parameter tractable algorithms for both the standard and the dual parameter, and for the latter problem, the result is based on a linear vertex kernel.

Download