No Arabic abstract
We study a simple model consisting of an atomic ion and a polar molecule trapped in a single setup, taking into consideration their electrostatic interaction. We determine analytically their collective modes of excitation as a function of their masses, trapping frequencies, distance, and the molecules electric dipole moment. We then discuss the application of these collective excitations to cool molecules, to entangle molecules and ions, and to realize two-qubit gates between them. We finally present a numerical analysis of the possibility of applying these tools to study magnetically ordered phases of two-dimensional arrays of polar molecules, a setup proposed to quantum-simulate some strongly-correlated models of condensed matter.
We measure the angular dependence of the resonant dipole-dipole interaction between two individual Rydberg atoms with controlled relative positions. By applying a combination of static electric and magnetic fields on the atoms, we demonstrate the possibility to isolate a single interaction channel at a Forster resonance, that shows a well-defined angular dependence. We first identify spectroscopically the Forster resonance of choice and we then perform a direct measurement of the interaction strength between the two atoms as a function of the angle between the internuclear axis and the quantization axis. Our results show good agreement with the expected angular dependence $propto(1-3cos^2theta)$, and represent an important step towards quantum state engineering in two-dimensional arrays of individual Rydberg atoms.
We analyze the temporal response of the fluorescence light that is emitted from a dense gas of cold atoms driven by a laser. When the average interatomic distance is smaller than the wavelength of the photons scattered by the atoms, the system exhibits strong dipolar interactions and collective dissipation. We solve the exact dynamics of small systems with different geometries and show how these collective features are manifest in the scattered light properties such as the photon emission rate, the power spectrum and the second-order correlation function. By calculating these quantities beyond the weak driving limit, we make progress in understanding the signatures of collective behavior in these many-body systems. Furthermore, we clarify the role of disorder on the resonance fluorescence, of direct relevance for recent experimental efforts that aim at the exploration of many-body effects in dipole-dipole interacting gases of atoms.
We study cold heteronuclear atom ion collisions by immersing a trapped single ion into an ultracold atomic cloud. Using ultracold atoms as reaction targets, our measurement is sensitive to elastic collisions with extremely small energy transfer. The observed energy-dependent elastic atom-ion scattering rate deviates significantly from the prediction of Langevin but is in full agreement with the quantum mechanical cross section. Additionally, we characterize inelastic collisions leading to chemical reactions at the single particle level and measure the energy-dependent reaction rate constants. The reaction products are identified by in-trap mass spectrometry, revealing the branching ratio between radiative and non-radiative charge exchange processes.
We study a stochastic lattice gas of particles in one dimension with strictly finite-range interactions that respect the fracton-like conservation laws of total charge and dipole moment. As the charge density is varied, the connectivity of the systems charge configurations under the dynamics changes qualitatively. We find two distinct phases: Near half filling the system thermalizes subdiffusively, with almost all configurations belonging to a single dynamically connected sector. As the charge density is tuned away from half filling there is a phase transition to a frozen phase where locally active finite bubbles cannot exchange particles and the system fails to thermalize. The two phases exemplify what has recently been referred to as weak and strong Hilbert space fragmentation, respectively. We study the static and dynamic scaling properties of this weak-to-strong fragmentation phase transition in a kinetically constrained classical Markov circuit model, obtaining some conjectured exact critical exponents.
The control of the ultracold collisions between neutral atoms is an extensive and successful field of study. The tools developed allow for ultracold chemical reactions to be managed using magnetic fields, light fields and spin-state manipulation of the colliding particles among other methods. The control of chemical reactions in ultracold atom-ion collisions is a young and growing field of research. Recently, the collision energy and the ion electronic state were used to control atom-ion interactions. Here, we demonstrate spin-controlled atom-ion inelastic processes. In our experiment, both spin-exchange and charge-exchange reactions are controlled in an ultracold Rb-Sr$^+$ mixture by the atomic spin state. We prepare a cloud of atoms in a single hyperfine spin-state. Spin-exchange collisions between atoms and ion subsequently polarize the ion spin. Electron transfer is only allowed for (RbSr)$^+$ colliding in the singlet manifold. Initializing the atoms in various spin states affects the overlap of the collision wavefunction with the singlet molecular manifold and therefore also the reaction rate. We experimentally show that by preparing the atoms in different spin states one can vary the charge-exchange rate in agreement with theoretical predictions.