No Arabic abstract
In this paper we provide an extension to the Jellett-Minkowskis formula for immersed submanifolds into ambient manifolds which possesses a pole and radial curvatures bounded from above or below by the radial sectional curvatures of a rotationally symmetric model space. Using this Jellett-Minkowskis generalized formula we can focus on several isoperimetric problems. More precisely, on lower bounds for isoperimetric quotients of any precompact domain with smooth boundary, or on the isoperimetric profile of the submanifold and its modified volume. In the particular case of a model space with strictly decreasing radial curvatures, an Aleksandrov type theorem is provided.
We obtain upper bounds for the isoperimetric quotients of extrinsic balls of submanifolds in ambient spaces which have a lower bound on their radial sectional curvatures. The submanifolds are themselves only assumed to have lower bounds on the radial part of the mean curvature vector field and on the radial part of the intrinsic unit normals at the boundaries of the extrinsic spheres, respectively. In the same vein we also establish lower bounds on the mean exit time for Brownian motion in the extrinsic balls. In those cases, where we may extend our analysis to hold all the way to infinity, we apply a capacity comparison technique to obtain a sufficient condition for the submanifolds to be parabolic, i.e. a condition which will guarantee that any Brownian particle, which is free to move around in the whole submanifold, is bound to eventually revisit any given neighborhood of its starting point with probability 1. The results of this paper are in a rough sense dual to similar results obtained previously by the present authors in complementary settings where we assume that the curvatures are bounded from above.
Let $Sigma$ be a $k$-dimensional complete proper minimal submanifold in the Poincar{e} ball model $B^n$ of hyperbolic geometry. If we consider $Sigma$ as a subset of the unit ball $B^n$ in Euclidean space, we can measure the Euclidean volumes of the given minimal submanifold $Sigma$ and the ideal boundary $partial_infty Sigma$, say $rvol(Sigma)$ and $rvol(partial_infty Sigma)$, respectively. Using this concept, we prove an optimal linear isoperimetric inequality. We also prove that if $rvol(partial_infty Sigma) geq rvol(mathbb{S}^{k-1})$, then $Sigma$ satisfies the classical isoperimetric inequality. By proving the monotonicity theorem for such $Sigma$, we further obtain a sharp lower bound for the Euclidean volume $rvol(Sigma)$, which is an extension of Fraser and Schoens recent result cite{FS} to hyperbolic space. Moreover we introduce the M{o}bius volume of $Sigma$ in $B^n$ to prove an isoperimetric inequality via the M{o}bius volume for $Sigma$.
By studying the monotonicity of the first nonzero eigenvalues of Laplace and p-Laplace operators on a closed convex hypersurface $M^n$ which evolves under inverse mean curvature flow in $mathbb{R}^{n+1}$, the isoperimetric lower bounds for both eigenvalues were founded.
We give an estimate of the mean curvature of a complete submanifold lying inside a closed cylinder $B(r)timesR^{ell}$ in a product Riemannian manifold $N^{n-ell}timesR^{ell}$. It follows that a complete hypersurface of given constant mean curvature lying inside a closed circular cylinder in Euclidean space cannot be proper if the circular base is of sufficiently small radius. In particular, any possible counterexample to a conjecture of Calabion complete minimal hypersurfaces cannot be proper. As another application of our method, we derive a result about the stochastic incompleteness of submanifolds with sufficiently small mean curvature.
Jorge-Koutrofiotis and Pigola-Rigoli-Setti proved sharp sectional curvature estimates for extrinsically bounded submanifolds. Alias, Bessa and Montenegro showed that these estimates hold on properly immersed cylindrically bounded submanifolds. On the other hand, Alias, Bessa and Dajczer proved sharp mean curvature estimates for properly immersed cylindrically bounded submanifolds. In this paper we prove these sectional and mean curvature estimates for a larger class of submanifolds, the properly immersed $phi$-bounded submanifolds.