Do you want to publish a course? Click here

Sisyphus cooling in a continuously loaded trap

102   0   0.0 ( 0 )
 Added by Valentin Volchkov V
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate continuous Sisyphus cooling combined with a continuous loading mechanism used to efficiently slow down and accumulate atoms from a guided beam. While the loading itself is based on a single slowing step, applying a radio frequency field forces the atoms to repeat this step many times resulting in a so-called Sisyphus cooling. This extension allows efficient loading and cooling of atoms from a wide range of initial beam conditions. We study the interplay of the continuous loading and simultaneous Sisyphus cooling in different density regimes. In the case of a low density flux we observe a relative gain in phase-space density of nine orders of magnitude. This makes the presented scheme an ideal tool for reaching collisional densities enabling evaporative cooling - in spite of unfavourable initial conditions.



rate research

Read More

We demonstrate experimentally the evaporative cooling of a few hundred rubidium 87 atoms in a single-beam microscopic dipole trap. Starting from 800 atoms at a temperature of 125microKelvins, we produce an unpolarized sample of 40 atoms at 110nK, within 3s. The phase-space density at the end of the evaporation reaches unity, close to quantum degeneracy. The gain in phase-space density after evaporation is 10^3. We find that the scaling laws used for much larger numbers of atoms are still valid despite the small number of atoms involved in the evaporative cooling process. We also compare our results to a simple kinetic model describing the evaporation process and find good agreement with the data.
239 - M. Gaudesius 2021
Large clouds of cold atoms prepared in a magneto-optical trap are known to present spatiotemporal instabilities when the frequency of the trapping lasers is brought close to the atomic resonance. This system bears similarities with trapped plasmas where the role of the Coulomb interaction is played by the exchange of scattered photons, and astrophysical objects such as stars whose size is dependent on radiative forces. We present in this paper a study of the phase-space of such instabilities, and reveal different dynamical regimes. Three dimensional simulations of the highly nonlinear atomic dynamics permit a detailed analysis of the experimental observations.
We report on a simple novel trapping scheme for the generation of Bose-Einstein condensates of $^{87}$Rb atoms. This scheme employs a near-infrared single beam optical dipole trap combined with a weak magnetic quadrupole field as used for magneto-optical trapping to enhance the confinement in axial direction. Efficient forced evaporative cooling to the phase transition is achieved in this weak hybrid trap via reduction of the laser intensity of the optical dipole trap at constant magnetic field gradient.
62 - Jiaming Li , Ji Liu , Wen Xu 2015
We demonstrate a novel technique for cooling a degenerate Fermi gas in a crossed-beam optical dipole trap, where high-energy atoms can be selectively removed from the trap by modulating the stiffness of the trapping potential with anharmonic trapping frequencies. We measure the dependence of the cooling effect on the frequency and amplitude of the parametric modulations. It is found that the large anharmonicity along the axial trapping potential allows to generate a degenerate Fermi gas with anisotropic energy distribution, in which the cloud energy in the axial direction can be reduced to the ground state value.
Rapidly scanning magnetic and optical dipole traps have been widely utilised to form time-averaged potentials for ultracold quantum gas experiments. Here we theoretically and experimentally characterise the dynamic properties of Bose-Einstein condensates in ring-shaped potentials that are formed by scanning an optical dipole beam in a circular trajectory. We find that unidirectional scanning leads to a non-trivial phase profile of the condensate that can be approximated analytically using the concept of phase imprinting. While the phase profile is not accessible through in-trap imaging, time-of-flight expansion manifests clear density signatures of an in-trap phase step in the condensate, coincident with the instantaneous position of the scanning beam. The phase step remains significant even when scanning the beam at frequencies two orders of magnitude larger than the characteristic frequency of the trap. We map out the phase and density properties of the condensate in the scanning trap, both experimentally and using numerical simulations, and find excellent agreement. Furthermore, we demonstrate that bidirectional scanning eliminated the phase gradient, rendering the system more suitable for coherent matter wave interferometry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا