Do you want to publish a course? Click here

Enhanced thermoelectric performance in spark plasma textured bulk n-type BiTe2.7Se0.3 and p-type Bi0.5Sb1.5Te3

120   0   0.0 ( 0 )
 Added by W. Prellier
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Bulk p and n-type bismuth telluride were prepared using spark plasma texturization method. The texture development along the uniaxial load in the 001 direction is confirmed from both x-ray diffraction analysis and Electron Backscattering Diffraction measurements. Interestingly, those textured samples outperform the samples prepared by conventional spark plasma sintering (SPS) leading to a reduced thermal conductivity in the ab-plane. The textured samples of n- type BiTe2.7Se0.3 and p-type Bi0.5Sb1.5Te3 showed a 42% and 33% enhancement in figure of merit at room temperature respectively, as compared to their SPS counterparts, opening the route for applications.



rate research

Read More

We present an investigation of the thermoelectric properties of cubic perovskite SrTiO3. The results are derived from a combination of calculated transport functions obtained from Boltzmann transport theory in the constant scattering time approximation based on the electronic structure and existing experimental data for La-doped SrTiO3. The figure of merit ZT is modeled with respect to carrier concentration and temperature. The model predicts a relatively high $ZT$ at optimized doping, and suggests that the $ZT$ value can reach 0.7 at T = 1400 K. Thus $ZT$ can be improved from the current experimental values by carrier concentration optimization.
We present results of electronic band structure, Fermi surface and electron transport properties calculations in orthorhombic $n$- and $p$-type SnSe, applying Korringa-Kohn-Rostoker method and Boltzmann transport approach. The analysis accounted for temperature effect on crystallographic parameters in $Pnma$ structure as well as the phase transition to $CmCm$ structure at $T_csim 807 $K. Remarkable modifications of conduction and valence bands were notified upon varying crystallographic parameters within the structure before $T_c$, while the phase transition mostly leads to jump in the band gap value. The diagonal components of kinetic parameter tensors (velocity, effective mass) and resulting transport quantity tensors (electrical conductivity $sigma$, thermopower $S$ and power factor PF) were computed in wide range of temperature ($15-900 $K) and, hole ($p-$type) and electron ($n-$type) concentration ($10^{17}-10^{21}$ cm$^{-3}$). SnSe is shown to have strong anisotropy of the electron transport properties for both types of charge conductivity, as expected for the layered structure. In general, $p$-type effective masses are larger than $n$-type ones. Interestingly, $p$-type SnSe has strongly non-parabolic dispersion relations, with the pudding-mold-like shape of the highest valence band. The analysis of $sigma$, $S$ and PF tensors indicates, that the inter-layer electron transport is beneficial for thermoelectric performance in $n$-type SnSe, while this direction is blocked in $p$-type SnSe, where in-plane transport is preferred. Our results predict, that $n$-type SnSe is potentially even better thermoelectric material than $p$-type one. Theoretical results are compared with single crystal $p$-SnSe measurements, and good agreement is found.
The growth and elementary properties of p-type Bi2Se3 single crystals are reported. Based on a hypothesis about the defect chemistry of Bi2Se3, the p-type behavior has been induced through low level substitutions (1 percent or less) of Ca for Bi. Scanning tunneling microscopy is employed to image the defects and establish their charge. Tunneling and angle resolved photoemission spectra show that the Fermi level has been lowered into the valence band by about 400 meV in Bi1.98Ca0.02Se3 relative to the n-type material. p-type single crystals with ab plane Seebeck coefficients of +180 microVK-1 at room temperature are reported. These crystals show a giant anomalous peak in the Seebeck coefficient at low temperatures, reaching +120 microVK-1 at 7 K, giving them a high thermoelectric power factor at low temperatures. In addition to its interesting thermoelectric properties, p-type Bi2Se3 is of substantial interest for studies of technologies and phenomena proposed for topological insulators.
87 - M. K. Hooda , C. S. Yadav 2017
Thermoelectric properties of polycrystalline p-type ZrTe5 are reported in temperature (T) range 2 - 340 K. Thermoelectric power (S) is positive and reaches up to 458 uV/K at 340 K on increasing T. The value of Fermi energy 16 meV, suggests low carrier density of ~ 9.5 X 10^18 cm-3. A sharp anomaly in S data is observed at 38 K, which seems intrinsic to p-type ZrTe5. The thermal conductivity value is low (2 W/m-K at T = 300 K) with major contribution from lattice part. Electrical resistivity data shows metal to semiconductor transition at T ~ 150 K and non-Arrhenius behavior in the semiconducting region. The figure of merit zT (0.026 at T = 300 K) is ~ 63% higher than HfTe5 (0.016), and better than the conventional SnTe, p-type PbTe and bipolar pristine ZrTe5 compounds.
We identify the multi-layered compound GeBi4Te7 to be a topological insulator with a freestanding Dirac point, slightly above the valence band maximum, using angle-resolved photoemission spectroscopy (ARPES) measurements. The spin polarization satisffies the time reversal symmetry of the surface states, visible in spin-resolved ARPES. For increasing Sb content in GeBi(4-x)SbxTe7 we observe a transition from n- to p-type in bulk sensitive Seebeck coefficient measurements at a doping of x = 0.6. In surface sensitive ARPES measurements a rigid band shift is observed with Sb doping, accompanied by a movement of the Dirac point towards the Fermi level. Between x = 0.8 and x = 1 the Fermi level crosses the band gap, changing the surface transport regime. This difference of the n- to p-type transition between the surface region and the bulk is caused by band bending effects which are also responsible for a non-coexistence of insulating phases in the bulk and in the near surface region.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا