Do you want to publish a course? Click here

Measurement of Muon Antineutrino Quasi-Elastic Scattering on a Hydrocarbon Target at E_{ u} ~ 3.5 GeV

215   0   0.0 ( 0 )
 Added by Kevin S. McFarland
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

We have isolated muon anti-neutrino charged-current quasi-elastic interactions occurring in the segmented scintillator tracking region of the MINERvA detector running in the NuMI neutrino beam at Fermilab. We measure the flux-averaged differential cross-section, d{sigma}/dQ^2, and compare to several theoretical models of quasi-elastic scattering. Good agreement is obtained with a model where the nucleon axial mass, M_A, is set to 0.99 GeV/c^2 but the nucleon vector form factors are modified to account for the observed enhancement, relative to the free nucleon case, of the cross-section for the exchange of transversely polarized photons in electron-nucleus scattering. Our data at higher Q^2 favor this interpretation over an alternative in which the axial mass is increased.



rate research

Read More

We report a study of muon neutrino charged-current quasi-elastic events in the segmented scintillator inner tracker of the MINERvA experiment running in the NuMI neutrino beam at Fermilab. The events were selected by requiring a {mu}^- and low calorimetric recoil energy separated from the interaction vertex. We measure the flux-averaged differential cross-section, d{sigma}/dQ^2, and study the low energy particle content of the final state. Deviations are found between the measured d{sigma}/dQ^2 and the expectations of a model of independent nucleons in a relativistic Fermi gas. We also observe an excess of energy near the vertex consistent with multiple protons in the final state.
We present double-differential measurements of anti-neutrino quasi-elastic scattering in the MINERvA detector. This study improves on a previous single differential measurement by using updated reconstruction algorithms and interaction models, and provides a complete description of observed muon kinematics in the form of a double-differential cross section with respect to muon transverse and longitudinal momentum. We include in our signal definition zero-meson final states arising from multi-nucleon interactions and from resonant pion production followed by pion absorption in the primary nucleus. We find that model agreement is considerably improved by a model tuned to MINERvA inclusive neutrino scattering data that incorporates nuclear effects such as weak nuclear screening and two-particle, two-hole enhancements.
MINERvA presents a new analysis of neutrino induced quasielastic-like interactions in a hydrocarbon tracking target. We report a double-differential cross section using the muon transverse and longitudinal momentum. In addition, differential cross sections as a function of the square of the four-momentum transferred and the neutrino energy are calculated using a quasielastic hypothesis. Finally, an analysis of energy deposited near the interaction vertex is presented. These results are compared to modified GENIE predictions as well as a NuWro prediction. All results use a dataset produced by $3.34times10^{20}$ protons on target creating a neutrino beam with a peak energy of approximately 3.5 GeV
The observation of neutrino oscillations is clear evidence for physics beyond the standard model. To make precise measurements of this phenomenon, neutrino oscillation experiments, including MiniBooNE, require an accurate description of neutrino charged current quasi-elastic (CCQE) cross sections to predict signal samples. Using a high-statistics sample of muon neutrino CCQE events, MiniBooNE finds that a simple Fermi gas model, with appropriate adjustments, accurately characterizes the CCQE events observed in a carbon-based detector. The extracted parameters include an effective axial mass, M_A^eff = 1.23+/-0.20 GeV, that describes the four-momentum dependence of the axial-vector form factor of the nucleon; and a Pauli-suppression parameter, kappa = 1.019+/-0.011. Such a modified Fermi gas model may also be used by future accelerator-based experiments measuring neutrino oscillations on nuclear targets.
The first direct measurement of electron-neutrino quasielastic and quasielastic-like scattering on hydrocarbon in the few-GeV region of incident neutrino energy has been carried out using the MINERvA detector in the NuMI beam at Fermilab. The flux-integrated differential cross sections in electron production angle, electron energy and $Q^{2}$ are presented. The ratio of the quasielastic, flux-integrated differential cross section in $Q^{2}$ for $ u_{e}$ with that of similarly-selected $ u_{mu}$-induced events from the same exposure is used to probe assumptions that underpin conventional treatments of charged-current $ u_{e}$ interactions used by long-baseline neutrino oscillation experiments. The data are found to be consistent with lepton universality and are well-described by the predictions of the neutrino event generator GENIE.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا