Do you want to publish a course? Click here

Development of a new generation of micropattern gaseous detectors for high energy physics, astrophysics and environmental applications

174   0   0.0 ( 0 )
 Added by Vladimir Peskov
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have developed a cost effective technology for manufacturing various layouts of micropattern gaseous detectors for a wide range of applications. Such devices feature resistive electrodes interfaced to a network of thin readout strips/electrodes. The following three examples of such innovative designs and their applications will be presented: a prototype of a novel double-phase LAr detector with a CsI photocathode immersed inside the LAr, a CsI-RICH detector prototype for ALICE upgrade and GEM-like sensors for environmental safety/security applications.



rate research

Read More

143 - T. Francke , V. Peskov 2004
Currently a revolution is taking place in the development of gaseous detectors of photons and particles. Parallel plate-type and wire-type detectors which dominated for years in high energy and space flight experiments are now being replaced by recently invented Micropattern gaseous detectors. We will now review the main achievements in this field and discuss the most promising directions in future developments and applications.
The paper summarizes our latest progress in the development of newly introduced micro pattern gaseous detectors with resistive electrodes. These resistive electrodes protect the detector and the front-end electronics in case of occasional discharges and thus make the detectors very robust and reliable in operation. As an example, we describe in greater detail a new recently developed GEM-like detector, fully spark-protected with electrodes made of resistive kapton. We discovered that all resistive layers used in these studies (including kapton), that are coated with photosensitive layers, such as CsI, can be used as efficient photo cathodes for detectors operating in a pulse counting mode. We describe the first applications of such detectors combined with CsI or SbCs photo cathodes for the detection of UV photons at room and cryogenic temperatures.
We have developed and successfully used several innovative designs of detectors with solid photocathodes. The main advantage of these detectors is that rather high gains (>10E4) can be achieved in a single multiplication step. This is possible by, for instance, exploiting the secondary electron multiplication and limiting the energy of the steamers by distributed resistivity. The single step approach also allows a very good position resolution to be achieved in some devices: 50 micron on line without applying any treatment method (like center of gravity). The main focus of our report is new fields of applications for these detectors and the optimization of their designs for such purposes.
Electroluminescence produced during avalanche development in gaseous avalanche detectors is an useful information for triggering, calorimetry and tracking in gaseous detectors. Noble gases present high electroluminescence yields, emitting mainly in the VUV region. The photons can provide signal readout if appropriate photosensors are used. Micropattern gaseous detectors are good candidates for signal amplification in high background and/or low rate experiments due to their high electroluminescence yields and radiopurity. In this work, the VUV light responses of the Gas Electron Multiplier and of the Micro-Hole Strip Plate, working with pure xenon, are simulated and studied in detail using a new and versatile C++ toolkit. It is shown that the solid angle subtended by a photosensor placed below the microstructures depends on the operating conditions. The obtained absolute EL yields, determined for different gas pressures and as functions of the applied voltage, are compared with those determined experimentally.
175 - Maxim Titov 2010
Since long time, the compelling scientific goals of future high energy physics experiments were a driving factor in the development of advanced detector technologies. A true innovation in detector instrumentation concepts came in 1968, with the development of a fully parallel readout for a large array of sensing elements - the Multiwire Proportional Chamber (MWPC), which earned Georges Charpak a Nobel prize in physics in 1992. Since that time radiation detection and imaging with fast gaseous detectors, capable of economically covering large detection volume with low mass budget, have been playing an important role in many fields of physics. Advances in photo-lithography and micro-processing techniques in the chip industry during the past decade triggered a major transition in the field of gas detectors from wire structures to Micro-Pattern Gas Detector (MPGD) concepts, revolutionizing cell size limitations for many gas detector applications. The high radiation resistance and excellent spatial and time resolution make them an invaluable tool to confront future detector challenges at the next generation of colliders. The design of the new micro-pattern devices appears suitable for industrial production. Novel structures where MPGDs are directly coupled to the CMOS pixel readout represent an exciting field allowing timing and charge measurements as well as precise spatial information in 3D. Originally developed for the high energy physics, MPGD applications has expanded to nuclear physics, UV and visible photon detection, astroparticle and neutrino physics, neutron detection and medical physics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا