Do you want to publish a course? Click here

Tracing molecular dynamics at the femto-/atto-second boundary through extreme-ultraviolet pump-probe spectroscopy

109   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Coherent light pulses of few to hundreds of femtoseconds (fs) duration have prolifically served the field of ultrafast phenomena. While fs pulses address mainly dynamics of nuclear motion in molecules or lattices in the gas, liquid or condensed matter phase, the advent of attosecond pulses has in recent years provided direct experimental access to ultrafast electron dynamics. However, there are processes involving nuclear motion in molecules and in particular coupled electronic and nuclear motion that possess few fs or even sub-fs dynamics. In the present work we have succeeded in addressing simultaneously vibrational and electronic dynamics in molecular Hydrogen. Utilizing a broadband extreme-ultraviolet (XUV) continuum the entire, Frank-Condon allowed spectrum of H2 is coherently excited. Vibrational, electronic and ionization 1fs scale dynamics are subsequently tracked by means of XUV-pump-XUV-probe measurements. These reflect the intrinsic molecular behavior as the XUV probe pulse hardly distorts the molecular potential.



rate research

Read More

Studies of ultrafast dynamics along with femtosecond-pulse metrology rely on non-linear processes, induced solely by the exciting/probing pulses or the pulses to be characterized. Extension of these approaches to the extreme-ultraviolet (XUV) spectral region opens up a new, direct route to attosecond scale dynamics. Limitations in available intensities of coherent XUV continua kept this prospect barren. The present work overcomes this barrier. Reaching condition at which simultaneous ejection of two bound electrons by two-XUV-photon absorption becomes more efficient than their one-by-one removal it is succeeded to probe atomic coherences, evolving at the 1fs scale, and determine the XUV-pulse duration. The investigated rich and dense in structure autoionizing manifold ascertains applicability of the approach to complex systems. This initiates the era of XUV-pump-XUV-probe experiments with attosecond resolution.
Polystyrene and polyvinyl chloride thin films are explored as sample supports for extreme ultraviolet (XUV) spectroscopy of molecular transition metal complexes. Thin polymer films prepared by slip-coating are flat, smooth, and transmit much more XUV light than silicon nitride windows. Analytes can be directly cast onto the polymer surface, or codeposited within it. The M-edge x-ray absorption near-edge (XANES) spectra (40-90 eV) of eight archetypal transition metal complexes (M=Mn, Fe, Co, Ni) are presented to demonstrate the versatility of this method. The films are suitable for pump/probe transient absorption spectroscopy, as shown by the excited-state spectra of Fe(bpy)$_3^{2+}$ in two different polymer supports.
152 - Amelie Ferre 2014
Strong field transient grating spectroscopy has shown to be a very versatile tool in time-resolved molecular spectroscopy. Here we use this technique to investigate the high-order harmonic generation from SF6 molecules vibrationally excited by impulsive stimulated Raman scattering. Transient grating spectroscopy enables us to reveal clear modulations of the harmonic emission. This heterodyne detection shows that the harmonic emission generated between 14 to 26 eV is mainly sensitive to two among the three active Raman modes in SF6, i.e. the strongest and fully symmetric nu 1-A1g mode (774 cm-1, 43 fs) and the slowest mode nu5-T2g (524 cm-1, 63 fs). A time-frequency analysis of the harmonic emission reveals additional dynamics: the strength and central frequency of the nu 1 mode oscillate with a frequency of 52 cm-1 (640 fs). This could be a signature of the vibration of dimers in the generating medium. Harmonic 11 shows a remarkable behavior, oscillating in opposite phase, both on the fast (774 cm-1) and slow (52 cm-1) timescales, which indicates a strong modulation of the recombination matrix element as a function of the nuclear geometry. These results demonstrate that the high sensitivity of high-order harmonic generation to molecularvibrations, associated to the high sensitivity of transient grating spectroscopy, make their combination a unique tool to probe vibrational dynamics.
Linear and non-linear spectroscopies are powerful tools used to investigate the energetics and dynamics of electronic excited states of both molecules and crystals. While highly accurate emph{ab initio} calculations of molecular spectra can be performed relatively routinely, extending these calculations to periodic systems is challenging. Here, we present calculations of the linear absorption spectrum and pump-probe two-photon photoemission spectra of the naphthalene crystal using equation-of-motion coupled-cluster theory with single and double excitations (EOM-CCSD). Molecular acene crystals are of interest due to the low-energy multi-exciton singlet states they exhibit, which have been studied extensively as intermediates involved in singlet fission. Our linear absorption spectrum is in good agreement with experiment, predicting a first exciton absorption peak at 4.4 eV, and our two-photon photoemission spectra capture the behavior of multi-exciton states, whose double-excitation character cannot be captured by current methods. The simulated pump-probe spectra provide support for existing interpretations of two-photon photoemission in closely-related acene crystals such as tetracene and pentacene.
We introduce and experimentally demonstrate a method, where the two intrinsic time scales of a molecule, the slow nuclear motion and the fast electronic motion, are simultaneously measured in a photo-electron photo-ion coincidence experiment. In our experiment, elliptically polarized, 750~nm, 4.5~fs laser pulses were focused to an intensity of $9times10^{14}mathrm{W/cm}^2$ onto H$_2$. Using coincidence imaging, we directly observe the nuclear wavepacket evolving on the ssg{} state of H$_2^+$ during its first roundtrip with attosecond temporal and picometer spatial resolution. The demonstrated method should enable insight into the first few femtoseconds of the vibronic dynamics of ionization-induced unimolecular reactions of larger molecules.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا