Do you want to publish a course? Click here

Investigating the relationship between AGN activity and stellar mass in zCOSMOS galaxies at 0<z<1 using emission line diagnostic diagrams

115   0   0.0 ( 0 )
 Added by Mariangela Vitale
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the link between AGN activity, star-formation and stellar mass of the host galaxy at 0<z<1, looking for spectroscopic traces of AGN and aging of the host. This work provides an extension of the existing studies at z<0.1 and contributes to shed light on galaxy evolution at intermediate redshifts. We used the zCOSMOS 20k data to create a sample of galaxies at z<1. We divided the sample in several mass-redshift bins to obtain stacked galaxy spectra with an improved S/N. We exploited emission-line diagnostic diagrams to separate AGN from star-forming galaxies. We found indication of a role for the total galaxy stellar mass in leading galaxy classification. Stacked spectra show AGN signatures above the log M_*/M_sun>10.2 threshold. Moreover, the stellar populations of AGN hosts are found to be older with respect to star-forming and composites galaxies. This could be due to the the tendency of AGN to reside in massive hosts. The dependence of the AGN classification on the stellar mass is in agreement with what has been already found in previous studies. It is consistent with, together with the evidence of older stellar populations inhabiting the AGN-like galaxies, the downsizing scenario. In particular, our evidence points to an evolutionary scenario where the AGN-feedback is capable of quenching the star formation in the most massive galaxies. Therefore, the AGN-feedback is the best candidate for initiating the passive evolutionary phase of galaxies.



rate research

Read More

We study the dependence of galaxy clustering on luminosity and stellar mass at redshifts z ~ [0.2-1] using the first zCOSMOS 10K sample. We measure the redshift-space correlation functions xi(rp,pi) and its projection wp(rp) for sub-samples covering different luminosity, mass and redshift ranges. We quantify in detail the observational selection biases and we check our covariance and error estimate techniques using ensembles of semi-analytic mock catalogues. We finally compare our measurements to the cosmological model predictions from the mock surveys. At odds with other measurements, we find a weak dependence of galaxy clustering on luminosity in all redshift bins explored. A mild dependence on stellar mass is instead observed. At z~0.7, wp(rp) shows strong excess power on large scales. We interpret this as produced by large-scale structure dominating the survey volume and extending preferentially in direction perpendicular to the line-of-sight. We do not see any significant evolution with redshift of the amplitude of clustering for bright and/or massive galaxies. The clustering measured in the zCOSMOS data at 0.5<z<1 for galaxies with log(M/M_odot)>=10 is only marginally consistent with predictions from the mock surveys. On scales larger than ~2 h^-1 Mpc, the observed clustering amplitude is compatible only with ~1% of the mocks. Thus, if the power spectrum of matter is LCDM with standard normalization and the bias has no unnatural scale-dependence, this result indicates that COSMOS has picked up a particularly rare, ~2-3 sigma positive fluctuation in a volume of ~10^6 h^-1 Mpc^3. These findings underline the need for larger surveys of the z~1 Universe to appropriately characterize the level of structure at this epoch.
We study the distribution and dynamics of the circum- and intergalactic medium using a dense galaxy survey covering the field around the Q0107 system, a unique z~1 projected quasar triplet. With full Ly$alpha$ coverage along all three lines-of-sight from z=0.18 to z=0.73, more than 1200 galaxy spectra, and two MUSE fields, we examine the structure of the gas around galaxies on 100-1000 kpc scales. We search for H I absorption systems occurring at the same redshift (within 500 $textrm{km}$ $textrm{s}^{-1}$) in multiple sightlines, finding with $>$ 99.9% significance that these systems are more frequent in the observed quasar spectra than in a randomly distributed population of absorbers. This is driven primarily by absorption with column densities N(H I) $> 10^{14}$ $textrm{cm}^{-2}$, whilst multi-sightline absorbers with lower column densities are consistent with a random distribution. Star-forming galaxies are more likely to be associated with multi-sightline absorption than quiescent galaxies. HST imaging provides inclinations and position angles for a subset of these galaxies. We observe a bimodality in the position angle of detected galaxy-absorber pairs, again driven mostly by high-column-density absorbers, with absorption preferentially along the major and minor axes of galaxies out to impact parameters of several hundred kpc. We find some evidence supporting a disk/outflow dichotomy, as H I absorbers near the projected major-axis of a galaxy show line-of-sight velocities that tend to align with the rotation of that galaxy, whilst minor-axis absorbers are twice as likely to exhibit O VI at the same redshift.
We present the results of a photometric and spectroscopic survey of 321 Lyman break galaxies (LBGs) at z ~ 3 to investigate systematically the relationship between Lya emission and stellar populations. Lya equivalent widths (EW) were calculated from rest-frame UV spectroscopy and optical/near-infrared/Spitzer photometry was used in population synthesis modeling to derive the key properties of age, dust extinction, star formation rate (SFR), and stellar mass. We directly compare the stellar populations of LBGs with and without strong Lya emission, where we designate the former group (EW > 20 AA) as Lya emitters (LAEs) and the latter group (EW < 20 AA) as non-LAEs. This controlled method of comparing objects from the same UV luminosity distribution represents an improvement over previous studies in which the stellar populations of LBGs and narrowband-selected LAEs were contrasted, where the latter were often intrinsically fainter in broadband filters by an order of magnitude simply due to different selection criteria. Using a variety of statistical tests, we find that Lya equivalent width and age, SFR, and dust extinction, respectively, are significantly correlated in the sense that objects with strong Lya emission also tend to be older, lower in star formation rate, and less dusty than objects with weak Lya emission, or the line in absorption. We accordingly conclude that, within the LBG sample, objects with strong Lya emission represent a later stage of galaxy evolution in which supernovae-induced outflows have reduced the dust covering fraction. We also examined the hypothesis that the attenuation of Lya photons is lower than that of the continuum, as proposed by some, but found no evidence to support this picture.
We present a photometric and spectroscopic study of galaxies at 0.5<z<1 as a function of environment based on data from the zCOSMOS survey. There is a fair amount of evidence that galaxy properties depend on mass of groups and clusters, in the sense that quiescent galaxies prefer more massive systems. We base our analysis on a mass-selected environment using X-ray groups of galaxies and define the group membership using a large number of spectroscopic redshifts from zCOSMOS. We show that the fraction of red galaxies is higher in groups than in the field at all redshifts probed in our study. Interestingly, the fraction of [OII] emitters on the red sequence increases at higher redshifts in groups, while the fraction does not strongly evolve in the field. This is due to increased dusty star formation activities and/or increased activities of active galactic nuclei (AGNs) in high redshift groups. We study these possibilities using the 30-band photometry and X-ray data. We find that the stellar population of the red [OII] emitters in groups is old and there is no clear hint of dusty star formation activities in those galaxies. The observed increase of red [OII] emitters in groups is likely due to increased AGN activities. However, our overall statistics is poor and any firm conclusions need to be drawn from a larger statistical sample of z~1 groups.
A numerous population of weak line galaxies (WLGs) is often left out of statistical studies on emission line galaxies (ELGs) due to the absence of an adequate classification scheme, since classical diagnostic diagrams, like [OIII]/Hb vs [NII]/Ha (the BPT diagram), require the measurement of at least 4 emission lines. This paper aims to remedy this situation by transposing the usual divisory lines between Star Forming (SF) and AGN hosts, and between Seyferts and LINERs to diagrams that are more economical in terms of line quality requirements. By doing this, we rescue from the classification limbo a substantial number of sources and modify the global census of ELGs. More specifically: (1) We use the SDSS DR7 to constitute a suitable sample of 280k ELGs, 1/3 of which are WLGs. (2) Galaxies with strong emission lines are classified using the widely applied criteria of Kewley et al (2001), Kauffmann et al (2003), Stasinska et al (2006) and Kewley et al (2006). (3) We transpose these classification schemes to alternative diagrams keeping [NII]/Ha as a horizontal axis, but replacing Hb by a stronger line (Ha or [OII]), or substituting [OIII]/Hb ratio with the equivalent width of Ha. Optimized equations for the transposed divisory lines are provided. (4) We show that nothing significant is lost in the translation, but that the new diagrams allow one to classify up to 50% more ELGs. (5) Introducing WLGs in the census of galaxies in the local Universe increases the proportion of metal-rich SF galaxies and especially LINERs. (abridged)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا