Do you want to publish a course? Click here

Design of a High Intensity Neutron Source for Neutron-Induced Fission Yield Studies

116   0   0.0 ( 0 )
 Added by Mattias Lantz
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

The upgraded IGISOL facility with JYFLTRAP, at the accelerator laboratory of the University of Jyvaskyla, has been supplied with a new cyclotron which will provide protons of the order of 100 {mu}A with up to 30 MeV energy, or deuterons with half the energy and intensity. This makes it an ideal place for measurements of neutron-induced fission products from various actinides, in view of proposed future nuclear fuel cycles. The groups at Uppsala University and University of Jyvaskyla are working on the design of a neutron converter that will be used as neutron source in fission yield studies. The design is based on simulations with Monte Carlo codes and a benchmark measurement that was recently performed at The Svedberg Laboratory in Uppsala. In order to obtain a competitive count rate the fission targets will be placed very close to the neutron converter. The goal is to have a flexible design that will enable the use of neutron fields with different energy distributions. In the present paper, some considerations for the design of the neutron converter will be discussed, together with different scenarios for which fission targets and neutron energies to focus on.



rate research

Read More

56 - T. Masuda , A. Yoshimi , 2016
We propose a new scheme of producing intense neutron beam whose yields exceed those of existing facilities by many orders of magnitude. This scheme uses the recently proposed photon beam extracted from circulating quantum ions, which is directed to a deuteron target for photo-disintegration. The calculated neutron energy spectrum is nearly flat down to neV range, except a threshold rise and its adjacent wide structure. Hence, there exists a possibility of directly using sub-eV neutrons without a moderator. We shall have brief comments on promising particle physics applications using this large yield of neutron.
314 - A.E. Lovell , P. Talou , I. Stetcu 2020
Several sources of angular anisotropy for fission fragments and prompt neutrons have been studied in neutron-induced fission reactions. These include kinematic recoils of the target from the incident neutron beam and the fragments from the emission of the prompt neutrons, preferential directions of the emission of the fission fragments with respect to the beam axis due to the population of particular transition states at the fission barrier, and forward-peaked angular distributions of pre-equilibrium neutrons which are emitted before the formation of a compound nucleus. In addition, there are several potential sources of angular anisotropies that are more difficult to disentangle: the angular distributions of prompt neutrons from fully accelerated fragments or from scission neutrons, and the emission of neutrons from fission fragments that are not fully accelerated. In this work, we study the effects of the first group of anisotropy sources, particularly exploring the correlations between the fission fragment anisotropy and the resulting neutron anisotropy. While kinematic effects were already accounted for in our Hauser-Feshbach Monte Carlo code, $mathtt{CGMF}$, anisotropic angular distributions for the fission fragments and pre-equilibrium neutrons resulting from neutron-induced fission on $^{233,234,235,238}$U, $^{239,241}$Pu, and $^{237}$Np have been introduced for the first time. The effects of these sources of anisotropy are examined over a range of incident neutron energies, from thermal to 20 MeV, and compared to experimental data from the Chi-Nu liquid scintillator array. The anisotropy of the fission fragments is reflected in the anisotropy of the prompt neutrons, especially as the outgoing energy of the prompt neutrons increases, allowing for an extraction of the fission fragment anisotropy to be made from a measurement of the neutrons.
We calculate neutron multiplicities from fission fragments with specified mass numbers for events having a specified total fragment kinetic energy. The shape evolution from the initial compound nucleus to the scission configurations is obtained with the Metropolis walk method on the five-dimensional potential-energy landscape, calculated with the macroscopic-microscopic method for the three-quadratic-surface shape family. Shape-dependent microscopic level densities are used to guide the random walk, to partition the intrinsic excitation energy between the two proto-fragments at scission, and to determine the spectrum of the neutrons evaporated from the fragments. The contributions to the total excitation energy of the resulting fragments from statistical excitation and shape distortion at scission is studied. Good agreement is obtained with available experimental data on neutron multiplicities in correlation with fission fragments from $^{235}$U(n$_{rm th}$,f). At higher neutron energies a superlong fission mode appears which affects the dependence of the observables on the total fragment kinetic energy.
253 - Bernhard Lauss 2012
Ultracold neutrons (UCN) can be stored in suitable bottles and observed for several hundreds of seconds. Therefore UCN can be used to study in detail the fundamental properties of the neutron. A new user facility providing ultracold neutrons for fundamental physics research has been constructed at the Paul Scherrer Institute, the PSI UCN source. Assembly of the facility finished in December 2010 with the first production of ultracold neutrons. Operation approval was received in June 2011. We give an overview of the source and the status at startup.
227 - Bernhard Lauss 2010
Commissioning of the new high-intensity ultracold neutron (UCN) source at the Paul Scherrer Institut (PSI) has started in 2009. The design goal of this new generation high intensity UCN source is to surpass by a factor of ~100 the current ultracold neutron densities available for fundamental physics research, with the greatest thrust coming from the search for a neutron electric dipole moment. The PSI UCN source is based on neutron production via proton induced lead spallation, followed by neutron thermalization in heavy water and neutron cooling in a solid deuterium crystal to cold and ultracold energies. A successful beam test with up to 2 mA proton beam on the spallation target was conducted recently. Most source components are installed, others being finally mounted. The installation is on the track for the first cool-down and UCN production in 2010.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا