In many systems, nucleation of a stable solid may occur in the presence of other (often more than one) metastable phases. These may be polymorphic solids or even liquid phases. In such cases, nucleation of the solid phase from the melt may be facilitated by the metastable phase because the latter can wet the interface between the parent and the daughter phases, even though there may be no signature of the existence of metastable phase in the thermodynamic properties of the parent liquid and the stable solid phase. Straightforward application of classical nucleation theory (CNT) is flawed here as it overestimates the nucleation barrier since surface tension is overestimated (by neglecting the metastable phases of intermediate order) while the thermodynamic free energy gap between daughter and parent phases remains unchanged. In this work we discuss a density functional theory (DFT) based statistical mechanical approach to explore and quantify such facilitation. We construct a simple order parameter dependent free energy surface that we then use in DFT to calculate (i) the order parameter profile, (ii) the overall nucleation free energy barrier and (iii) the surface tension between the parent liquid and the metastable solid and also parent liquid and stable solid phases. The theory indeed finds that the nucleation free energy barrier can decrease significantly in the presence of wetting. This approach can provide a microscopic explanation of Ostwald step rule and the well-known phenomenon of disappearing polymorphs that depends on temperature and other thermodynamic conditions. Theory reveals a diverse scenario for phase transformation kinetics some of which may be explored via modern nanoscopic synthetic methods.