Do you want to publish a course? Click here

Non-perturbative aspects of gauge/gravity duality

153   0   0.0 ( 0 )
 Added by Marco Billo'
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

Recently we provided a microscopic derivation of the exact supergravity profile for the twisted scalar field emitted by systems of fractional D3-branes at a Z2 orbifold singularity. In this contribution we focus on a set-up supporting an N = 2 SYM theory with SU(2) gauge group and Nf=4. We take into account the tower of D-instanton corrections to the source terms for the twisted scalar and find that its profile can be expressed in terms of the chiral ring elements of the gauge theory. We show how the twisted scalar, which at the perturbative level represents the gravity counterpart of the gauge coupling, at the non-perturbative level is related to the effective gauge coupling in an interestingly modified way.



rate research

Read More

We give an introductory review of gauge/gravity duality, and associated ideas of holography, emphasising the conceptual aspects. The opening Sections gather the ingredients, viz. anti-de Sitter spacetime, conformal field theory and string theory, that we need for presenting, in Section 5, the central and original example: Maldacenas AdS/CFT correspondence. Sections 6 and 7 develop the ideas of this example, also in applications to condensed matter systems, QCD, and hydrodynamics. Sections 8 and 9 discuss the possible extensions of holographic ideas to de Sitter spacetime and to black holes. Section 10 discusses the bearing of gauge/gravity duality on two philosophical topics: the equivalence of physical theories, and the idea that spacetime, or some features of it, are emergent.
286 - M. Billo , M. Frau , F. Fucito 2012
We derive the exact supergravity profile for the twisted scalar field emitted by a system of fractional D3 branes at a Z2 orbifold singularity supporting N=2 quiver gauge theories with unitary groups and bifundamental matter. At the perturbative level this twisted field is dual to the gauge coupling but it is corrected non-perturbatively by an infinite tower of fractional D-instantons. The explicit microscopic description allows to derive the gravity profile from disk amplitudes computing the emission rate of the twisted scalar field in terms of chiral correlators in the dual gauge theory. We compute these quantum correlators using multi-instanton localization techniques and/or Seiberg-Witten analysis. Finally, we discuss a non-perturbative relation between the twisted scalar and the effective coupling of the gauge theory for some simple choices of the brane set ups.
It has been conjectured that duality cascade occurs in the $mathcal{N}=3$ supersymmetric Yang-Mills Chern-Simons theory with the gauge group $U(N )_k times U(N+M )_{-k}$ coupled to two bi-fundamental hypermultiplets. The brane picture suggests that this duality cascade can be generalized to a class of 3d $mathcal{N}=3$ supersymmetric quiver gauge theories coming from so-called Hanany-Witten type brane configurations. In this paper we perform non-perturbative tests of the duality cascades using supersymmetry localization. We focus on $S^3$ partition functions and prove predictions from the duality cascades. We also discuss that our result can be applied to generate new dualities for more general theories which include less supersymmetric theories and theories without brane constructions.
Recently, Saad, Shenker and Stanford showed how to define the genus expansion of Jackiw-Teitelboim quantum gravity in terms of a double-scaled Hermitian matrix model. However, the models non-perturbative sector has fatal instabilities at low energy that they cured by procedures that render the physics non-unique. This might not be a desirable property for a system that is supposed to capture key features of quantum black holes. Presented here is a model with identical perturbative physics at high energy that instead has a stable and unambiguous non-perturbative completion of the physics at low energy. An explicit examination of the full spectral density function shows how this is achieved. The new model, which is based on complex matrix models, also allows for the straightforward inclusion of spacetime features analogous to Ramond-Ramond fluxes. Intriguingly, there is a deformation parameter that connects this non-perturbative formulation of JT gravity to one which, at low energy, has features of a super JT gravity.
159 - Spenta R. Wadia 2010
We discuss the AdS/CFT correspondence in which space-time emerges from an interacting theory of D-branes and open strings. These ideas have a historical continuity with QCD which is an interacting theory of quarks and gluons. In particular we review the classic case of D3 branes and the non-conformal D1 brane system. We outline by some illustrative examples the calculations that are enabled in a strongly coupled gauge theory by correspondence with dynamical horizons in semi-classical gravity in one higher dimension. We also discuss implications of the gauge-fluid/gravity correspondence for the information paradox of black hole physics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا