Do you want to publish a course? Click here

Time-dependent galactic winds I. Structure and evolution of galactic outflows accompanied by cosmic ray acceleration

188   0   0.0 ( 0 )
 Added by Ernst Dorfi A
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cosmic rays are transported out of the galaxy by diffusion and advection due to streaming along magnetic field lines and resonant scattering off self-excited MHD waves. Thus momentum is transferred to the plasma via the frozen-in waves as a mediator assisting the thermal pressure in driving a galactic wind. The bulk of the Galactic CRs are accelerated by shock waves generated in SNRs, a significant fraction of which occur in OB associations on a timescale of several $10^7$ years. We examine the effect of changing boundary conditions at the base of the galactic wind due to sequential SN explosions on the outflow. Thus pressure waves will steepen into shock waves leading to in situ post-acceleration of GCRs. We performed simulations of galactic winds in flux tube geometry appropriate for disk galaxies, describing the CR diffusive-advective transport in a hydrodynamical fashion along with the energy exchange with self-generated MHD waves. Our time-dependent CR hydrodynamic simulations confirm the existence of time asymptotic outflow solutions (for constant boundary conditions). It is also found that high-energy particles escaping from the Galaxy and having a power-law distribution in energy ($propto E^{-2.7}$) similar to the Milky Way with an upper energy cut-off at $sim 10^{15}$ eV are subjected to efficient and rapid post-SNR acceleration in the lower galactic halo up to energies of $10^{17} - 10^{18}$ eV by multiple shock waves propagating through the halo. The particles can gain energy within less than $3,$kpc from the galactic plane corresponding to flow times less than $5cdot 10^6,$years. The mechanism described here offers a natural solution to explain the power-law distribution of CRs between the knee and the ankle. The mechanism described here offers a natural and elegant solution to explain the power-law distribution of CRs between the knee and the ankle.



rate research

Read More

286 - S. Recchia , P. Blasi , G. Morlino 2016
The escape of cosmic rays from the Galaxy leads to a gradient in the cosmic ray pressure that acts as a force on the background plasma, in the direction opposite to the gravitational pull. If this force is large enough to win against gravity, a wind can be launched that removes gas from the Galaxy, thereby regulating several physical processes, including star formation. The dynamics of these cosmic ray driven winds is intrinsically non-linear in that the spectrum of cosmic rays determines the characteristics of the wind (velocity, pressure, magnetic field) and in turn the wind dynamics affects the cosmic ray spectrum. Moreover, the gradient of the cosmic ray distribution function causes excitation of Alfven waves, that in turn determine the scattering properties of cosmic rays, namely their diffusive transport. These effects all feed into each other so that what we see at the Earth is the result of these non-linear effects. Here we investigate the launch and evolution of such winds, and we determine the implications for the spectrum of cosmic rays by solving together the hydrodynamical equations for the wind and the transport equation for cosmic rays under the action of self-generated diffusion and advection with the wind and the self-excited Alfven waves.
We aim to constrain the evolution of AGN as a function of obscuration using an X-ray selected sample of $sim2000$ AGN from a multi-tiered survey including the CDFS, AEGIS-XD, COSMOS and XMM-XXL fields. The spectra of individual X-ray sources are analysed using a Bayesian methodology with a physically realistic model to infer the posterior distribution of the hydrogen column density and intrinsic X-ray luminosity. We develop a novel non-parametric method which allows us to robustly infer the distribution of the AGN population in X-ray luminosity, redshift and obscuring column density, relying only on minimal smoothness assumptions. Our analysis properly incorporates uncertainties from low count spectra, photometric redshift measurements, association incompleteness and the limited sample size. We find that obscured AGN with $N_{H}>{rm 10^{22}, cm^{-2}}$ account for ${77}^{+4}_{-5}%$ of the number density and luminosity density of the accretion SMBH population with $L_{{rm X}}>10^{43}text{ erg/s}$, averaged over cosmic time. Compton-thick AGN account for approximately half the number and luminosity density of the obscured population, and ${38}^{+8}_{-7}%$ of the total. We also find evidence that the evolution is obscuration-dependent, with the strongest evolution around $N_{H}thickapprox10^{23}text{ cm}^{-2}$. We highlight this by measuring the obscured fraction in Compton-thin AGN, which increases towards $zsim3$, where it is $25%$ higher than the local value. In contrast the fraction of Compton-thick AGN is consistent with being constant at $approx35%$, independent of redshift and accretion luminosity. We discuss our findings in the context of existing models and conclude that the observed evolution is to first order a side-effect of anti-hierarchical growth.
144 - S. Recchia , P. Blasi , G. Morlino 2017
Cosmic Rays escaping the Galaxy exert a force on the interstellar medium directed away from the Galactic disk. If this force is larger than the gravitational pull due to the mass embedded in the Galaxy, then galactic winds may be launched. Such outflows may have important implications for the history of star formation of the host galaxy, and in turn affect in a crucial way the transport of cosmic rays, both due to advection with the wind and to the excitation of waves by the same cosmic rays, through streaming instability. The possibility to launch cosmic ray induced winds and the properties of such winds depend on environmental conditions, such as the density and temperature of the plasma at the base of the wind and the gravitational potential, especially the one contributed by the dark matter halo. In this paper we make a critical assessment of the possibility to launch cosmic ray induced winds for a Milky-Way-like galaxy and how the properties of the wind depend upon the conditions at the base of the wind. Special attention is devoted to the implications of different conditions for wind launching on the spectrum of cosmic rays observed at different locations in the disc of the galaxy. We also comment on how cosmic ray induced winds compare with recent observations of Oxygen absorption lines in quasar spectra and emission lines from blank-sky, as measured by XMM-Newton/EPIC-MOS.
Isotropy is a key assumption in many models of cosmic-ray electrons and positrons. We find that simulation results imply a critical energy of ~10-1000 GeV above which electrons and positrons can spend their entire lives in streams threading magnetic fields, due to energy losses. This would restrict the number of electron/positron sources contributing at Earth, likely leading to smooth electron and positron spectra, as is observed. For positrons, this could be as few as one, with an enhanced flux that would ease energetics concerns of a pulsar origin of the positron excess, or even zero, bringing dark matter into play. We conclude that ideas about electron/positron propagation based on either isotropic diffusion or turbulent fields must be changed.
We present a model to self-consistently describe the joint evolution of starburst galaxies and the galactic wind resulting from this evolution. We combine the population synthesis code Starburst99 with a semi-analytical model of galactic outflows and a model for the distribution and abundances of chemical elements inside the outflows. Starting with a galaxy mass, formation redshift, and adopting a particular form for the star formation rate, we describe the evolution of the stellar populations in the galaxy, the evolution of the metallicity and chemical composition of the interstellar medium (ISM), the propagation of the galactic wind, and the metal-enrichment of the intergalactic medium (IGM). In this paper, we study the properties of the model, by varying the mass of the galaxy, the star formation rate, and the efficiency of star formation. Our main results are the following: (1) For a given star formation efficiency f*, a more extended period of active star formation tends to produce a galactic wind that reaches a larger extent. If f* is sufficiently large, the energy deposited by the stars completely expels the ISM. Eventually, the ISM is being replenished by mass loss from supernovae and stellar winds. (2) For galaxies with masses above 10^11 Msun, the material ejected in the IGM always falls back onto the galaxy. Hence lower-mass galaxies are the ones responsible for enriching the IGM. (3) Stellar winds play a minor role in the dynamical evolution of the galactic wind, because their energy input is small compared to supernovae. However, they contribute significantly to the chemical composition of the galactic wind. We conclude that the history of the ISM enrichment plays a determinant role in the chemical composition and extent of the galactic wind, and therefore its ability to enrich the IGM.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا