No Arabic abstract
The twisted reduced model of large $N$ QCD with two adjoint Wilson fermions is studied numerically using the Hybrid Monte Carlo method. This is the one-site model, whose large $N$ limit (large volume limit) is expected to be conformal or nearly conformal. The string tension calculated at $N$=289 approaches zero as we decrease quark mass and the preliminary value of the mass anomalous dimension $gamma_*$ is close to one if we assume that the theory is governed by an infrared fixed point. We also discuss the twisted reduced model with single adjoint Wilson fermion. The string tension remains finite as the quark mass decreases to zero, supporting that this is the confining theory.
The twisted space-time reduced model of large $N$ QCD with various flavours of adjoint Wilson fermions is constructed applying the symmetric twist boundary conditions with flux $k$. The models with one and two flavours show distinctive behaviours. For the two flavor case, the string tension, calculated at $N=289$, approaches zero as we decrease the quark mass in a way consistent with the theory being governed by an infrared fixed point. In contrast, the string tension for the case of a single adjoint Wilson fermion remains finite as the quark mass decreases to zero, supporting that this is a confining theory.
The twisted reduced model of large $N$ QCD with two adjoint Wilson fermions is studied numerically using the Hybrid Monte Carlo method. This is the one-site model, whose large $N$ limit (large volume limit) is expected to be conformal or nearly conformal. The symmetric twist boundary condition with flux $k$ is used. $k$=0 corresponds to periodic boundary conditions. It is shown that the quark mass and $N$ dependencies of the model with non-vanishing $k$ differ significantly from those of the $k$=0 model. A preliminary result for the string tension calculated at $N$=289 is presented. The string tension seems to vanish as the physical quark mass decreases to zero in a way consistent with the theory being governed by an infrared fixed point with $gamma_* = 0.8 sim 1.2$.
We study four dimensional large-N SU(N) Yang-Mills theory coupled to adjoint overlap fermions on a single site lattice. Lattice simulations along with perturbation theory show that the bare quark mass has to be taken to zero as one takes the continuum limit in order to be in the physically relevant center-symmetric phase. But, it seems that it is possible to take the continuum limit with any renormalized quark mass and still be in the center-symmetric physics. We have also conducted a study of the correlations between Polyakov loop operators in different directions and obtained the range for the Wilson mass parameter that enters the overlap Dirac operator.
QCD is investigated at finite temperature using Wilson fermions in the fixed scale approach. A 2+1 flavor stout and clover improved action is used at four lattice spacings allowing for control over discretization errors. The light quark masses in this first study are fixed to heavier than physical values. The renormalized chiral condensate, quark number susceptibility and the Polyakov loop is measured and the results are compared with the staggered formulation in the fixed N_t approach. The Wilson results at the finest lattice spacing agree with the staggered results at the highest N_t.
We investigate the leading lattice spacing effects in mesonic two-point correlators computed with twisted mass Wilson fermions in the epsilon-regime. By generalizing the procedure already introduced for the untwisted Wilson chiral effective theory, we extend the continuum chiral epsilon expansion to twisted mass WChPT. We define different regimes, depending on the relative power counting for the quark masses and the lattice spacing. We explicitly compute, for arbitrary twist angle, the leading O(a^2) corrections appearing at NLO in the so-called GSM^* regime. As in untwisted WChPT, we find that in this situation the impact of explicit chiral symmetry breaking due to lattice artefacts is strongly suppressed. Of particular interest is the case of maximal twist, which corresponds to the setup usually adopted in lattice simulations with twisted mass Wilson fermions. The formulae we obtain can be matched to lattice data to extract physical low energy couplings, and to estimate systematic uncertainties coming from discretization errors.