Equivalence of the categories of modules over Lie algebroids


Abstract in English

We study geometric representation theory of Lie algebroids. A new equivalence relation for integrable Lie algebroids is introduced and investigated. It is shown that two equivalent Lie algebroids have equivalent categories of infinitesimal actions of Lie algebroids. As an application, it is also shown that the Hamiltonian categories for gauge equivalent Dirac structures are equivalent as categories.

Download