Do you want to publish a course? Click here

Eigenvalue estimates for submanifolds of warped product spaces

183   0   0.0 ( 0 )
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

We give lower bounds for the fundamental tone of open sets in minimal submanifolds immersed into warped product spaces of type $N^n times_f Q^q$, where $f in C^infty(N)$. We also study the essential spectrum of these minimal submanifolds.



rate research

Read More

154 - Mukut Mani Tripathi 2008
We obtain a basic inequality involving the Laplacian of the warping function and the squared mean curvature of any warped product isometrically immersed in a Riemannian manifold without assuming any restriction on the Riemann curvature tensor of the ambient manifold. Applying this general theory, we obtain basic inequalities involving the Laplacian of the warping function and the squared mean curvature of $C$-totally real warped product submanifolds of $(kappa ,mu ) $-space forms, Sasakian space forms and non-Sasakian $(kappa ,mu) $-manifolds. Then we obtain obstructions to the existence of minimal isometric immersions of $C$-totally real warped product submanifolds in $(kappa ,mu) $-space forms, non-Sasakian $(kappa ,mu) $-manifolds and Sasakian space forms. In the last, we obtain an example of a warped product $C$-totally real submanifold of a non-Sasakian $(kappa ,mu) $-manifold, which satisfies the equality case of the basic inequality.
We give lower bounds for the fundamental tone of open sets in submanifolds with locally bounded mean curvature in $ N times mathbb{R}$, where $N$ is an $n$-dimensional complete Riemannian manifold with radial sectional curvature $K_{N} leq kappa$. When the immersion is minimal our estimates are sharp. We also show that cylindrically bounded minimal surfaces has positive fundamental tone.
Non-existence of warped product semi-slant submanifolds of Kaehler manifolds was proved in [17], it is interesting to find their existence. In this paper, we prove the existence of warped product semi-slant submanifolds of nearly Kaehler manifolds by a characterization. To this end we obtain an inequality for the squared norm of second fundamental form in terms of the warping function and the slant angle. The equality case is also discussed.
We prove spectral, stochastic and mean curvature estimates for complete $m$-submanifolds $varphi colon M to N$ of $n$-manifolds with a pole $N$ in terms of the comparison isoperimetric ratio $I_{m}$ and the extrinsic radius $r_varphileq infty$. Our proof holds for the bounded case $r_varphi< infty$, recovering the known results, as well as for the unbounded case $r_{varphi}=infty$. In both cases, the fundamental ingredient in these estimates is the integrability over $(0, r_varphi)$ of the inverse $I_{m}^{-1}$ of the comparison isoperimetric radius. When $r_{varphi}=infty$, this condition is guaranteed if $N$ is highly negatively curved.
Jorge-Koutrofiotis and Pigola-Rigoli-Setti proved sharp sectional curvature estimates for extrinsically bounded submanifolds. Alias, Bessa and Montenegro showed that these estimates hold on properly immersed cylindrically bounded submanifolds. On the other hand, Alias, Bessa and Dajczer proved sharp mean curvature estimates for properly immersed cylindrically bounded submanifolds. In this paper we prove these sectional and mean curvature estimates for a larger class of submanifolds, the properly immersed $phi$-bounded submanifolds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا