No Arabic abstract
The VIMOS Public Extragalactic Redshift Survey (VIPERS) is an ongoing ESO Large Programme to map in detail the large-scale distribution of galaxies at 0.5 < z <1.2. With a combination of volume and sampling density that is unique for these redshifts, it focuses on measuring galaxy clustering and related cosmological quantities as part of the grand challenge of understanding the origin of cosmic acceleration. VIPERS has also been designed to guarantee a broader legacy, allowing detailed investigations of the properties and evolutionary trends of z~1 galaxies. The survey strategy exploits the specific advantages of the VIMOS spectrograph at the VLT, aiming at a final sample of nearly 100,000 galaxy redshifts to iAB = 22.5 mag, which represents the largest redshift survey ever performed with ESO telescopes. In this introductory article we describe the survey construction, together with early results based on a first sample of ~55,000 galaxies.
We describe the construction and general features of VIPERS, the VIMOS Public Extragalactic Redshift Survey. This `Large Programme has been using the ESO VLT with the aim of building a spectroscopic sample of ~100,000 galaxies with i_{AB}<22.5 and 0.5<z<1.5. The survey covers a total area of ~24 deg^2 within the CFHTLS-Wide W1 and W4 fields. VIPERS is designed to address a broad range of problems in large-scale structure and galaxy evolution, thanks to a unique combination of volume (~ 5 x 10^7 h^{-3} Mpc^3) and sampling rate (~ 40%), comparable to state-of-the-art surveys of the local Universe, together with extensive multi-band optical and near-infrared photometry. Here we present the survey design, the selection of the source catalogue and the development of the spectroscopic observations. We discuss in detail the overall selection function that results from the combination of the different constituents of the project. This includes the masks arising from the parent photometric sample and the spectroscopic instrumental footprint, together with the weights needed to account for the sampling and the success rates of the observations. Using the catalogue of 53,608 galaxy redshifts composing the forthcoming VIPERS Public Data Release 1 (PDR-1), we provide a first assessment of the quality of the spectroscopic data. Benefiting from the combination of size and detailed sampling of this dataset, we conclude by presenting a map showing in unprecedented detail the large-scale distribution of galaxies between 5 and 8 billion years ago. [abridged]
A short overview is given on the development of our present paradigm of the large scale structure of the Universe with emphasis on the role of Ya. B. Zeldovich. Next we use the Sloan Digital Sky Survey data and show that the distribution of phases of density waves of various scale in the present-day Universe are correlated. Using numerical simulations of structure evolution we show that the skeleton of the cosmic web was present already in an early stage of the evolution of structure. The positions of maxima and minima of density waves (their phases) are the more stable, the larger is the wavelength. The birth of the first generation of stars occured most probably in the central regions of rich proto-superclusters where the density was highest in the early Universe.
We present a new method to identify large scale filaments and apply it to a cosmological simulation. Using positions of haloes above a given mass as node tracers, we look for filaments between them using the positions and masses of all the remaining dark-matter haloes. In order to detect a filament, the first step consists in the construction of a backbone linking two nodes, which is given by a skeleton-like path connecting the highest local dark matter (DM) density traced by non-node haloes. The filament quality is defined by a density and gap parameters characterising its skeleton, and filament members are selected by their binding energy in the plane perpendicular to the filament. This membership condition is associated to characteristic orbital times; however if one assumes a fixed orbital timescale for all the filaments, the resulting filament properties show only marginal changes, indicating that the use of dynamical information is not critical for the method. We test the method in the simulation using massive haloes($M>10^{14}$h$^{-1}M_{odot}$) as filament nodes. The main properties of the resulting high-quality filaments (which corresponds to $simeq33%$ of the detected filaments) are, i) their lengths cover a wide range of values of up to $150 $h$^{-1}$Mpc, but are mostly concentrated below 50h$^{-1}$Mpc; ii) their distribution of thickness peaks at $d=3.0$h$^{-1}$Mpc and increases slightly with the filament length; iii) their nodes are connected on average to $1.87pm0.18$ filaments for $simeq 10^{14.1}M_{odot}$ nodes; this number increases with the node mass to $simeq 2.49pm0.28$ filaments for $simeq 10^{14.9}M_{odot}$ nodes.
In order to infer the impact of the small-scale physics to the large-scale properties of the universe, we use a series of cosmological $N$-body simulations of self-gravitating matter inhomogeneities to measure, for the first time, the response function of such a system defined as a functional derivative of the nonlinear power spectrum with respect to its linear counterpart. Its measured shape and amplitude are found to be in good agreement with perturbation theory predictions except for the coupling from small to large-scale perturbations. The latter is found to be significantly damped, following a Lorentzian form. These results shed light on validity regime of perturbation theory calculations giving a useful guideline for regularization of small scale effects in analytical modeling. Most importantly our result indicates that the statistical properties of the large-scale structure of the universe are remarkably insensitive to the details of the small-scale physics, astrophysical or gravitational, paving the way for the derivation of robust estimates of theoretical uncertainties on the determination of cosmological parameters from large-scale survey observations.
Cosmological neutrinos strongly affect the evolution of the largest structures in the Universe, i.e. galaxies and galaxy clusters. We use large box-size full hydrodynamic simulations to investigate the non-linear effects that massive neutrinos have on the spatial properties of cold dark matter (CDM) haloes. We quantify the difference with respect to the concordance LambdaCDM model of the halo mass function and of the halo two-point correlation function. We model the redshift-space distortions and compute the errors on the linear distortion parameter beta introduced if cosmological neutrinos are assumed to be massless. We find that, if not taken correctly into account and depending on the total neutrino mass, these effects could lead to a potentially fake signature of modified gravity. Future nearly all-sky spectroscopic galaxy surveys will be able to constrain the neutrino mass if it is larger than 0.6 eV, using beta measurements alone and independently of the value of the matter power spectrum normalisation. In combination with other cosmological probes, this will strengthen neutrino mass constraints and help breaking parameter degeneracies.