Do you want to publish a course? Click here

Criterion on remote clocks synchronization within a Heisenberg scaling accuracy

123   0   0.0 ( 0 )
 Added by Yong-liang Zhang
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a quantum method to judge whether two spatially separated clocks have been synchronized within a specific accuracy $sigma$. If the measurement result of the experiment is obviously a nonzero value, the time difference between two clocks is smaller than $sigma$; otherwise the difference is beyond $sigma$. On sharing the 2$N$-qubit bipartite maximally entangled state in this scheme, the accuracy of judgement can be enhanced to $sigmasim{pi}/{(omega(N+1))}$. This criterion is consistent with Heisenberg scaling that can be considered as beating standard quantum limit, moreover, the unbiased estimation condition is not necessary.

rate research

Read More

We propose a quantum fitting scheme to estimate the magnetic field gradient with $N$-atom spins preparing in W state, which attains the Heisenberg-scaling accuracy. Our scheme combines the quantum multi-parameter estimation and the least square linear fitting method to achieve the quantum Cram{e}r-Rao bound (QCRB). We show that the estimated quantity achieves the Heisenberg-scaling accuracy. In single parameter estimation with assumption that the magnetic field is strictly linear, two optimal measurements can achieve the identical Heisenberg-scaling accuracy. Proper interpretation of the super-Heisenberg-scaling accuracy is presented. The scheme of quantum metrology combined with data fitting provides a new method in fast high precision measurements.
The problem of constructing a necessary and sufficient condition for establishing the separability of continuous variable systems is revisited. Simon [R. Simon, Phys. Rev. Lett. 84, 2726 (2000)] pointed out that such a criterion may be constructed by drawing a parallel between the Peres partial transpose criterion for finite dimensional systems and partial time reversal transformation for continuous variable systems. We generalize the partial time reversal transformation to a partial scaling transformation and re-examine the problem using a tomographic description of the continuous variable quantum system. The limits of applicability of the entanglement criteria obtained from partial scaling and partial time reversal are explored.
116 - Brahim Lamine 2008
Exchanging light pulses to perform accurate space-time positioning is a paradigmatic issue of physics. It is ultimately limited by the quantum nature of light, which introduces fluctuations in the optical measurements and leads to the so-called Standard Quantum Limit (SQL). We propose a new scheme combining homodyne detection and mode-locked femtosecond lasers that lead to a new SQL in time transfer, potentially reaching the yoctosecond range (10^-21-10^-24 s). We prove that no other measurement strategy can lead to better sensitivity with shot noise limited light. We then demonstrate that this already very low SQL can be overcome using appropriately multimode squeezed light. Benefitting from the large number of photons used in the experiment and from the optimal choice of both the detection strategy and of the quantum resource, the proposed scheme represents a significant potential improvement in space-time positioning.
We have constructed an optical clock with a fractional frequency inaccuracy of 8.6e-18, based on quantum logic spectroscopy of an Al+ ion. A simultaneously trapped Mg+ ion serves to sympathetically laser-cool the Al+ ion and detect its quantum state. The frequency of the 1S0->3P0 clock transition is compared to that of a previously constructed Al+ optical clock with a statistical measurement uncertainty of 7.0e-18. The two clocks exhibit a relative stability of 2.8e-15/ sqrt(tau), and a fractional frequency difference of -1.8e-17, consistent with the accuracy limit of the older clock.
It has recently been reported [textit{PNAS} textbf{114}, 2303 (2017)] that, under an operational definition of time, quantum clocks would get entangled through gravitational effects. Here we study an alternative scenario: the clocks have different masses and energy gaps, which would produce time difference via gravitational interaction. The proposal of quantum clock synchronization for the gravity-induced time difference is discussed. We illustrate how the stability of measurement probability in the quantum clock synchronization proposal is influenced by the gravitational interaction induced by the clock themselves. It is found that the precision of clock synchronization depends on the energy gaps of the clocks and the improvement of precision in quantum metrology is in fact an indicator of entanglement generation. We also present the quantum enhanced estimation of time difference and find that the quantum Fisher information is very sensitive to the distance between the clocks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا