Mid-infrared microlensing of accretion disc and dusty torus in quasars: effects on flux ratio anomalies


Abstract in English

Multiply-imaged quasars and AGNs observed in the mid-infrared (MIR) range are commonly assumed to be unaffected by the microlensing produced by the stars in their lensing galaxy. In this paper, we investigate the validity domain of this assumption. Indeed, that premise disregards microlensing of the accretion disc in the MIR range, and does not account for recent progress in our knowledge of the dusty torus. To simulate microlensing, we first built a simplified image of the quasar composed of an accretion disc, and of a larger ring-like torus. The mock quasars are then microlensed using an inverse ray-shooting code. We simulated the wavelength and size dependence of microlensing for different lensed image types and fraction of compact objects projected in the lens. This allows us to derive magnification probabilities as a function of wavelength, as well as to calculate the microlensing-induced deformation of the spectral energy distribution of the lensed images. We find that microlensing variations as large as 0.1 mag are very common at 11 microns (observer-frame). The main signal comes from microlensing of the accretion disc, which may be significant even when the fraction of flux from the disc is as small as 5 % of the total flux. We also show that the torus of sources with Lbol <~ 10^45 erg/s is expected to be noticeably microlensed. Microlensing may thus be used to get insight into the rest near-infrared inner structure of AGNs. Finally, we investigate whether microlensing in the mid-infrared can alter the so-called Rcusp relation that links the fluxes of the lensed images triplet produced when the source lies close to a cusp macro-caustic. This relation is commonly used to identify massive (dark-matter) substructures in lensing galaxies. We find that significant deviations from Rcusp may be expected, which means that microlensing can explain part of the flux ratio problem.

Download