Efficient Mesh Optimization Using the Gradient Flow of the Mean Volume


Abstract in English

The signed volume function for polyhedra can be generalized to a mean volume function for volume elements by averaging over the triangulations of the underlying polyhedron. If we consider these up to translation and scaling, the resulting quotient space is diffeomorphic to a sphere. The mean volume function restricted to this sphere is a quality measure for volume elements. We show that, the gradient ascent of this map regularizes the building blocks of hybrid meshes consisting of tetrahedra, hexahedra, prisms, pyramids and octahedra, that is, the optimization process converges to regular polyhedra. We show that the (normalized) gradient flow of the mean volume yields a fast and efficient optimization scheme for the finite element method known as the geometric element transformation method (GETMe). Furthermore, we shed some light on the dynamics of this method and the resulting smoothing procedure both theoretically and experimentally.

Download