Do you want to publish a course? Click here

Quasiparticle Dynamics in Reshaped Helical Dirac Cone of Topological Insulators

153   0   0.0 ( 0 )
 Added by Dong Qian
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Topological insulators (TIs) and graphene present two unique classes of materials which are characterized by spin polarized (helical) and non-polarized Dirac-cone band structures, respectively. The importance of many-body interactions that renormalize the linear bands near Dirac point in graphene has been well recognized and attracted much recent attention. However, renormalization of the helical Dirac point has not been observed in TIs. Here, we report the experimental observation of the renormalized quasi-particle spectrum with a skewed Dirac cone in a single Bi bilayer grown on Bi2Te3 substrate, from angle-resolved photoemission spectroscopy. First-principles band calculations indicate that the quasi-particle spectra are likely associated with the hybridization between the extrinsic substrate-induced Dirac states of Bi bilayer and the intrinsic surface Dirac states of Bi2Te3 film at close energy proximity. Without such hybridization, only single-particle Dirac spectra are observed in a single Bi bilayer grown on Bi2Se3, where the extrinsic Dirac states Bi bilayer and the intrinsic Dirac states of Bi2Se3 are well separated in energy. The possible origins of many-body interactions are discussed. Our findings provide a means to manipulate topological surface states.



rate research

Read More

The unoccupied states in topological insulators Bi_2Se_3, PbSb_2Te_4, and Pb_2Bi_2Te_2S_3 are studied by the density functional theory methods. It is shown that a surface state with linear dispersion emerges in the inverted conduction band energy gap at the center of the surface Brillouin zone on the (0001) surface of these insulators. The alternative expression of Z_2 invariant allowed us to show that a necessary condition for the existence of the second Gamma Dirac cone is the presence of local gaps at the time reversal invariant momentum points of the bulk spectrum and change of parity in one of these points.
302 - J. Cayssol 2013
We present a short pedagogical introduction to the physics of Dirac materials, restricted to graphene and two- dimensional topological insulators. We start with a brief reminder of the Dirac and Weyl equations in the particle physics context. Turning to condensed matter systems, semimetallic graphene and various Dirac insulators are introduced, including the Haldane and the Kane-Mele topological insulators. We also discuss briefly experimental realizations in materials with strong spin-orbit coupling.
The advent of Dirac materials has made it possible to realize two dimensional gases of relativistic fermions with unprecedented transport properties in condensed matter. Their photoconductive control with ultrafast light pulses is opening new perspectives for the transmission of current and information. Here we show that the interplay of surface and bulk transient carrier dynamics in a photoexcited topological insulator can control an essential parameter for photoconductivity - the balance between excess electrons and holes in the Dirac cone. This can result in a strongly out of equilibrium gas of hot relativistic fermions, characterized by a surprisingly long lifetime of more than 50 ps, and a simultaneous transient shift of chemical potential by as much as 100 meV. The unique properties of this transient Dirac cone make it possible to tune with ultrafast light pulses a relativistic nanoscale Schottky barrier, in a way that is impossible with conventional optoelectronic materials.
Granular conductors form an artificially engineered class of solid state materials wherein the microstructure can be tuned to mimic a wide range of otherwise inaccessible physical systems. At the same time, topological insulators (TIs) have become a cornerstone of modern condensed matter physics as materials hosting metallic states on the surface and insulating in the bulk. However it remains to be understood how granularity affects this new and exotic phase of matter. We perform electrical transport experiments on highly granular topological insulator thin films of Bi$_2$Se$_3$ and reveal remarkable properties. We observe clear signatures of topological surface states despite granularity with distinctly different properties from conventional bulk TI systems including sharp surface state coupling-decoupling transitions, large surface state penetration depths and exotic Berry phase effects. We present a model which explains these results. Our findings illustrate that granularity can be used to engineer designer TIs, at the same time allowing easy access to the Dirac-fermion physics that is inaccessible in single crystal systems.
We investigate in a fully quantum-mechanical manner how the many-body excitation spectrum of topological insulators is affected by the presence of long-range Coulomb interactions. In the one-dimensional Su-Schrieffer-Heeger model and its mirror-symmetric variant strongly localized plasmonic excitations are observed which originate from topologically non-trivial single-particle states. These textit{topological plasmons} inherit some of the characteristics of their constituent topological single-particle states, but they are not equally well protected against disorder due to the admixture of non-topological bulk single-particle states in the polarization function. The strength of the effective Coulomb interactions is also shown to have strong effects on the plasmonic modes. Furthermore, we show how external modifications via dielectric screening and applied electric fields with distinct symmetries can be used to study topological plasmons, thus allowing for experimental verification of our atomistic predictions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا