No Arabic abstract
We present new empirical calibrations to estimate resolved and integrated total infrared luminosities from Spitzer and Herschel bands used as monochromatic or combined tracers. We base our calibrations on resolved elements of nearby galaxies (3 to 30 Mpc) observed with Herschel. We perform a resolved SED modelling of these objects using the Draine and Li (2007) dust models and investigate the influence of the addition of SPIRE measurements in the estimation of LTIR. We find that using data up to 250 um leads to local LTIR values consistent with those obtained with a complete coverage (up to 500 um) within 10 per cent for most of our resolved elements. We then study the distribution of energy in the resolved SEDs of our galaxies. The bulk of energy (30-50 per cent) is contained in the (70-160 um) band. The (24-70 um) fraction decreases with increasing metallicity. The (160-1100 um) submillimeter band can account for up to 25 per cent of the LTIR in metal-rich galaxies. We investigate the correlation between TIR surface brightnesses/luminosities and monochromatic Spitzer and Herschel surface brightnesses/luminosities. The three PACS bands can be used as reliable monochromatic estimators of the LTIR, the 100 um band being the most reliable monochromatic tracer. There is also a strong correlation between the SPIRE 250um and LTIR, although with more scatter than for the PACS relations. We also study the ability of our monochromatic relations to reproduce integrated LTIR of nearby galaxies as well as LTIR of z=1-3 sources. Finally, we provide calibration coefficients that can be used to derive TIR surface brightnesses/luminosities from a combination of Spitzer and Herschel surface brightnesses/fluxes and analyse the associated uncertainties.
Dust-obscured galaxies (DOGs) are a subset of high-redshift (z approx 2) optically-faint ultra-luminous infrared galaxies (ULIRGs, e.g. L_{IR} > 10^{12} Lsun). We present new far-infrared photometry, at 250, 350, and 500 um (observed-frame), from the Herschel Space Telescope for a large sample of 113 DOGs with spectroscopically measured redshifts. Approximately 60% of the sample are detected in the far-IR, confirming their high IR luminosities, which range from 10^{11.6} Lsun < L_{IR} (8-1000 um) <10^{13.6} Lsun. 90% of the Herschel detected DOGs in this sample are ULIRGs and 30% have L_{IR} > 10^{13} Lsun. The rest-frame near-IR (1 - 3 um) SEDs of the Herschel detected DOGs are predictors of their SEDs at longer wavelengths. DOGs with power-law SEDs in the rest-frame near-IR show observed-frame 250/24 um flux density ratios similar to the QSO-like local ULIRG, Mrk 231. DOGs with a stellar bump in their rest-frame near-IR show observed-frame 250/24 um flux density ratios similar to local star-bursting ULIRGs like NGC 6240. For the Herschel detected DOGs, accurate estimates (within approx 25%) of total IR luminosity can be predicted from their rest-frame mid-IR data alone (e.g. from Spitzer observed-frame 24 um luminosities). Herschel detected DOGs tend to have a high ratio of infrared luminosity to rest-frame 8 um luminosity (the IR8= L_{IR}(8-1000 um)/v L_{v}(8 um) parameter of Elbaz et al. 2011). Instead of lying on the z=1-2 infrared main-sequence of star forming galaxies (like typical LIRGs and ULIRGs at those epochs) the DOGs, especially large fractions of the bump sources, tend to lie in the starburst sequence. While, Herschel detected DOGs are similar to scaled
New far-infrared and sub-millimeter photometry from the Herschel Space Observatory is presented for 61 nearby galaxies from the Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel (KINGFISH) sample. The spatially-integrated fluxes are largely consistent with expectations based on Spitzer far-infrared photometry and extrapolations to longer wavelengths using popular dust emission models. Dwarf irregular galaxies are notable exceptions, as already noted by other authors, as their 500um emission shows evidence for a sub-millimeter excess. In addition, the fraction of dust heating attributed to intense radiation fields associated with photo-dissociation regions is found to be (21+/-4)% larger when Herschel data are included in the analysis. Dust masses obtained from the dust emission models of Draine & Li are found to be on average nearly a factor of two higher than those based on single-temperature modified blackbodies, as single blackbody curves do not capture the full range of dust temperatures inherent to any galaxy. The discrepancy is largest for galaxies exhibiting the coolest far-infrared colors.
We review the main advances brought by the Spitzer Space Telescope in the field of nearby galaxies studies, concentrating on a few subject areas, including: (1) the physics of the Polycyclic Aromatic Hydrocarbons that generate the mid-infrared features between ~3.5 micron and ~20 micron; (2) the use of the mid- and far-infrared emission from galaxies as star formation rate indicators; and (3) the improvement of mid-infrared diagnostics to discriminate between thermal (star-formation) and non-thermal (AGN) emission in galaxies and galaxy centers.
The Herschel Reference Survey (HRS) is a guaranteed time Herschel key project aimed at studying the physical properties of the interstellar medium in galaxies of the nearby universe. This volume limited, K-band selected sample is composed of galaxies spanning the whole range of morphological types (from ellipticals to late-type spirals) and environments (from the field to the centre of the Virgo Cluster). We present flux density measurements of the whole sample of 323 galaxies of the HRS in the three bands of the Spectral and Photometric Imaging Receiver (SPIRE), at 250, 350 and 500 microns. Aperture photometry is performed on extended galaxies and point spread function (PSF) fitting on timeline data for unresolved objects; we carefully estimate errors and upper limits. The flux densities are found to be in good agreement with those of the HeViCS and KINGFISH key projects in all SPIRE bands, and of the Planck consortium at 350 and 550 microns, for the galaxies in common. This submillimetre catalogue of nearby galaxies is a benchmark for the study of the dust properties in the local universe, giving the zero redshift reference for any cosmological survey.
We present the results of Spitzer IRS low-resolution infrared 5-35 micron spectroscopy of 17 nearby ULIRGs at z < 0.2, optically classified as non-Seyferts. The presence of optically elusive, but intrinsically luminous, buried AGNs is investigated, based on the strengths of polycyclic aromatic hydrocarbon emission and silicate dust absorption features detected in the spectra. The signatures of luminous buried AGNs, whose intrinsic luminosities range up to ~10^12 Lsun, are found in eight sources. We combine these results with those of our previous research to investigate the energy function of buried AGNs in a complete sample of optically non-Seyfert ULIRGs in the local universe at z < 0.3 (85 sources). We confirm a trend that we previously discovered: that buried AGNs are more common in galaxies with higher infrared luminosities. Because optical Seyferts also show a similar trend, we argue more generally that the energetic importance of AGNs is intrinsically higher in more luminous galaxies, suggesting that the AGN-starburst connections are luminosity-dependent. This may be related to the stronger AGN feedback scenario in currently more massive galaxy systems, as a possible origin of the galaxy downsizing phenomenon.