Do you want to publish a course? Click here

Exploring the Effect of Noise on the Berry Phase

332   0   0.0 ( 0 )
 Added by Simon Berger
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We make use of a superconducting qubit to study the effects of noise on adiabatic geometric phases. The state of the system, an effective spin one-half particle, is adiabatically guided along a closed path in parameter space and thereby acquires a geometric phase. By introducing artificial fluctuations in the control parameters, we measure the geometric contribution to dephasing for a variety of noise powers and evolution times. Our results clearly show that only fluctuations which distort the path lead to geometric dephasing. In a direct comparison with the dynamic phase, which is path-independent, we observe that the adiabatic geometric phase is less affected by noise-induced dephasing. This observation directly points towards the potential of geometric phases for quantum gates or metrological applications.



rate research

Read More

We study the effect of laser phase noise on the generation of stationary entanglement between an intracavity optical mode and a mechanical resonator in a generic cavity optomechanical system. We show that one can realize robust stationary optomechanical entanglement even in the presence of non-negligible laser phase noise. We also show that the explicit form of the laser phase noise spectrum is relevant, and discuss its effect on both optomechanical entanglement and ground state cooling of the mechanical resonator.
We report on the study of the non-trivial Berry phase in superconducting multiterminal quantum dots biased at commensurate voltages. Starting with the time-periodic Bogoliubov-de Gennes equations, we obtain a tight binding model in the Floquet space, and we solve these equations in the semiclassical limit. We observe that the parameter space defined by the contact transparencies and quartet phase splits into two components with a non-trivial Berry phase. We use the Bohr-Sommerfeld quantization to calculate the Berry phase. We find that if the quantum dot level sits at zero energy, then the Berry phase takes the values $varphi_B=0$ or $varphi_B=pi$. We demonstrate that this non-trivial Berry phase can be observed by tunneling spectroscopy in the Floquet spectra. Consequently, the Floquet-Wannier-Stark ladder spectra of superconducting multiterminal quantum dots are shifted by half-a-period if $varphi_B=pi$. Our numerical calculations based on Keldysh Greens functions show that this Berry phase spectral shift can be observed from the quantum dot tunneling density of states.
374 - F. T. Vasko 2017
We consider dissipative dynamics of a flux qubit caused by 1/f noises, which act both on the shunting LC-contour and on the SQUID loop. These classical Gaussian noises modulate of the level splitting and of the tunnel coupling, respectively, and they are partially correlated. The transient evolution of qubit has been studied for the regimes: (a) the interwell incoherent tunneling, (b) the relaxation of interlevel population, and (c) the decoherence of the off-diagonal part of a density matrix. For all regimes, the relaxation rates and the frequency renormalization [for the case (c)] are analyzed versus the parameters of qubit and couplings to the noises applied. The fluctuation effects give a dominant contribution at tails of relaxation, so that the averaged dissipative dynamics is not valid there. The results obtained open a way for verification of the parameters of qubit-noise interaction and for minimization of coupling between qubit and environment. Under typical level of noises, the results are comparable to the recent experimental data on the population relaxation and on the incoherent interwell tunneling.
We study the photon shot noise dephasing of a superconducting transmon qubit in the strong-dispersive limit, due to the coupling of the qubit to its readout cavity. As each random arrival or departure of a photon is expected to completely dephase the qubit, we can control the rate at which the qubit experiences dephasing events by varying textit{in situ} the cavity mode population and decay rate. This allows us to verify a pure dephasing mechanism that matches theoretical predictions, and in fact explains the increased dephasing seen in recent transmon experiments as a function of cryostat temperature. We investigate photon dynamics in this limit and observe large increases in coherence times as the cavity is decoupled from the environment. Our experiments suggest that the intrinsic coherence of small Josephson junctions, when corrected with a single Hahn echo, is greater than several hundred microseconds.
419 - Maxim Braverman 2013
In 1984 Michael Berry discovered that an isolated eigenstate of an adiabatically changing periodic Hamiltonian $H(t)$ acquires a phase, called the Berry phase. We show that under very general assumptions the adiabatic approximation of the phase of the zeta-regularized determinant of the imaginary-time Schrodinger operator with periodic Hamiltonian is equal to the Berry phase.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا