No Arabic abstract
We present a detailed study of intermittency in the velocity and magnetic field fluctuations of compressible Hall-magnetohydrodynamic turbulence with an external guide field. To solve the equations numerically, a reduced model valid when a strong guide field is present is used. Different values for the ion skin depth are considered in the simulations. The resulting data is analyzed computing field increments in several directions perpendicular to the guide field, and building structure functions and probability density functions. In the magnetohydrodynamic limit we recover the usual results with the magnetic field being more intermittent than the velocity field. In the presence of the Hall effect, field fluctuations at scales smaller than the ion skin depth show a substantial decrease in the level of intermittency, with close to monofractal scaling.
Works of D. Tsiklauri, T. Haruki, Phys. of Plasmas, 15, 102902 (2008) and D. Tsiklauri and T. Haruki, Phys. of Plasmas, 14, 112905, (2007) are extended by inclusion of the out-of-plane magnetic (guide) field. In particular, magnetic reconnection during collisionless, stressed $X$-point collapse for varying out-of-plane guide-fields is studied using a kinetic, 2.5D, fully electromagnetic, relativistic particle-in-cell numerical code. Cases for both open and closed boundary conditions are investigated, where magnetic flux and particles are lost and conserved respectively. It is found that reconnection rates and out-of-plane currents in the $X$-point increase more rapidly and peak sooner in the closed boundary case, but higher values are reached in the open boundary case. The normalized reconnection rate is fast: 0.10-0.25. In the open boundary case an increase of guide-field yields later onsets in the reconnection peak rates, while in the closed boundary case initial peak rates occur sooner but are suppressed. The reconnection current increases for low guide-fields but then decreases similarly. In the open boundary case, for guide-fields of the order of the in-plane magnetic field, the generation of electron vortices occurs. Possible causes of the vortex generation, based on the flow of particles in the diffusion region and localized plasma heating, are discussed. Before peak reconnection onset, oscillations in the out-of-plane electric field at the $X$-point are found, ranging in frequency from approximately 1 to 2 $omega_{pe}$ and coinciding with oscillatory reconnection. These oscillations are found to be part of a larger wave pattern. Mapping the out-of-plane electric field over time and applying 2D Fourier transforms reveals that the waves predominantly correspond to the ordinary mode and may correspond to observable radio waves such as solar radio burst fine structure spikes.
Traditionally, the strongest magnetic fields on the Sun have been measured in sunspot umbrae. More recently, however, much stronger fields have been measured at the ends of penumbral filaments carrying the Evershed and counter-Evershed flows. Superstrong fields have also been reported within a light bridge separating two umbrae of opposite polarities. We aim to accurately determine the strengths of the strongest fields in a light bridge using an advanced inversion technique and to investigate their detailed structure. We analyze observations from the spectropolarimeter on board the Hinode spacecraft of the active region AR 11967. The thermodynamic and magnetic configurations are obtained by inverting the Stokes profiles using an inversion scheme that allows multiple height nodes. Both the traditional 1D inversion technique and the so-called 2D coupled
The tearing mode instability is one important mechanism that may explain the triggering of fast magnetic reconnection in astrophysical plasmas such as the solar corona and the Earths magnetosphere. In this paper, the linear stability analysis of the tearing mode is carried out for a current sheet in the presence of a guide field, including the Hall effect. We show that the presence of a strong guide field does not modify the most unstable mode in the two-dimensional wave vector space orthogonal to the current gradient direction, which remains the fastest growing parallel mode. With the Hall effect, the inclusion of a guide field turns the non-dispersive propagation along the guide field direction to a dispersive one. The oblique modes have a wave-like structure along the normal direction of the current sheet and a strong guide field suppresses this structure while making the eigen-functions asymmetric.
Models for astrophysical plasmas often have magnetic field lines that leave the boundary rather than closing within the computational domain. Thus, the relative magnetic helicity is frequently used in place of the usual magnetic helicity, so as to restore gauge invariance. We show how to decompose the relative helicity into a relative field-line helicity that is an ideal-magnetohydrodynamic invariant for each individual magnetic field line, and vanishes along any field line where the original field matches the reference field. Physically, this relative field-line helicity is a magnetic flux, whose specific definition depends on the gauge of the reference vector potential on the boundary. We propose a particular `minimal gauge that depends only on the reference field and minimises this boundary contribution, so as to reveal topological information about the original magnetic field. We illustrate the effect of different gauge choices using the Low-Lou and Titov-Demoulin models of solar active regions. Our numerical code to compute appropriate vector potentials and relative field-line helicity in Cartesian domains is open source and freely available.
The Eulerian space-time correlation of strong Magnetohydrodynamic (MHD) turbulence in strongly magnetized plasmas is investigated by means of direct numerical simulations of Reduced MHD turbulence and phenomenological modeling. Two new important results follow from the simulations: 1) counter-propagating Alfvenic fluctuations at a each scale decorrelate in time at the same rate in both balanced and imbalanced turbulence; and 2) the scaling with wavenumber of the decorrelation rate is consistent with pure hydrodynamic sweeping of small-scale structures by the fluctuating velocity of the energy-containing scales. An explanation of the simulation results is proposed in the context of a recent phenomenological MHD model introduced by Bourouaine and Perez 2019 (BP19) when restricted to the strong turbulence regime. The model predicts that the two-time power spectrum exhibits an universal, self-similar behavior that is solely determined by the probability distribution function of random velocities in the energy-containing range. Understanding the scale-dependent temporal evolution of the space-time turbulence correlation as well as its associated universal properties is essential in the analysis and interpretation of spacecraft observations, such as the recently launched Parker Solar Probe (PSP).