Do you want to publish a course? Click here

Dynamics during outburst: VLTI observations of the young eruptive star V1647 Ori during its 2003-2006 outburst

203   0   0.0 ( 0 )
 Added by L\\'aszl\\'o Mosoni
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context: It is hypothesized that low-mass young stellar objects undergo eruptive phases during their early evolution. The outburst of V1647 Ori between 2003 and 2006 offered a rare opportunity to investigate such an accretion event. Aims: By means of our interferometry observing campaign during this outburst, supplemented by other observations, we investigate the temporal evolution of the inner circumstellar structure of V1647 Ori We also study the role of the changing extinction in the brightening of the object and separate it from the accretional brightening. Methods: We observed V1647 Ori with MIDI/VLTI at two epochs in this outburst. First, during the slowly fading plateau phase (2005 March) and second, just before the rapid fading of the object (2005 September), which ended the outburst. We used the radiative transfer code MC3D to fit the interferometry data and the spectral energy distributions from five different epochs at different stages of the outburst. The comparison of these models allowed us to trace structural changes in the system on AU-scales. We also considered qualitative alternatives for the interpretation of our data. Results: We found that the disk and the envelope are similar to those of non-eruptive young stars and that the accretion rate varied during the outburst. We also found evidence for the increase of the inner radii of the circumstellar disk and envelope at the beginning of the outburst. Furthermore, the change of the interferometric visibilities indicates structural changes in the circumstellar material. We test a few scenarios to interpret these data. We also speculate that the changes are caused by the fading of the central source, which is not immediately followed by the fading of the outer regions. However, if the delay in the fading of the disk is responsible for the changes seen in the MIDI data, the effect should be confirmed by dynamical modeling.



rate research

Read More

202 - D. Fedele 2007
The occurrence of new FU Orionis-like objects is fundamental to understand the outburst mechanism in young stars and their role in star formation and disk evolution. Our work is aimed at investigating the properties of the recent outburst of V1647 Ori. Using optical and mid infrared long slit spectroscopy we monitored V1647 Ori in outburst between February 2004 and January 2006. The optical spectrum is characterized by Halpha and Hbeta in P-Cygni profile and by many weak FeI and FeII emission lines. Short timescale variability was measured in the continuum and line emission. On January 2006 we detected for the first time forbidden emission lines ([OI], [SII] and [FeII]). These lines are likely produced by an Herbig-Haro object driven by V1647 Ori. The mid infrared the spectrum of V1647 Ori is flat and featureless at all epochs. The SED changed drastically: the source was much redder in the early outburst than in the final phase. The magnitude rise and the SED of V1647 Ori resembles that of a FUor while the duration and recurrence of the outburst resemble that of a EXor. The optical spectrum is clearly distinct from either the absorption line spectrum of a FUor or the T Tauri-like spectrum of an EXor. Our data are consistent with a disk instability event which led to an increase of the mass accretion rate. The data also suggest the presence of a circumstellar envelope around the star+disk system. The peculiar N band spectrum might be explained by dust sublimation in the outer layers of the disk. The presence of the envelope and the outburst statistics suggest that these instability events occur only in a specific stage of a Class I source (e.g. in the transition phase to an optically visible star surrounded by a protoplanetary disk). We discuss the outburst mechanisms in term of the thermal instability model.
(Abridged) We studied the brightness and spectral evolution of the young eruptive star V1647 Ori during its recent outburst in the period 2004 February - 2006 Sep. We performed a photometric follow-up in the bands V, R_C, I_C, J, H, K_s as well as visible and near-IR spectroscopy. The main results are as follows: The brightness of V1647 Ori stayed more than 4 mag above the pre-outburst level until 2005 October when it started a rapid fading. In the high state we found a periodic component in the optical light curves with a period of 56 days. The delay between variations of the star and variations in the brightness of clump of nearby nebulosity corresponds to an angle of 61+/-14 degrees between the axis of the nebula and the line of sight. A steady decrease of HI emission line fluxes could be observed. In 2006 May, in the quiescent phase, the HeI 1.083 line was observed in emission, contrary to its deep blueshifted absorption observed during the outburst. The J-H and H-K_s color maps of the infrared nebula reveal an envelope around the star. The color distribution of the infrared nebula suggests reddening of the scattered light inside a thick circumstellar disk. We show that the observed properties of V1647 Ori could be interpreted in the framework of the thermal instability models of Bell et al. (1995). V1647 Ori might belong to a new class of young eruptive stars, defined by relatively short timescales, recurrent outbursts, modest increase in bolometric luminosity and accretion rate, and an evolutionary state earlier than that of typical EXors.
148 - D. Fedele 2007
Aims: The recent outburst of the young eruptive star V1647 Orionis has produced a spectacular appearance of a new reflection nebula in Orion (McNeils nebula). We present an optical/near infrared investigation of McNeils nebula. This analysis is aimed at determining the morphology, temporal evolution and nature of the nebula and its connection to the outburst. Method: We performed multi epoch B, V, R, I, z, and K imaging of McNeils nebula and V1647 Ori as well as K_S imaging polarimetry. The multiband imaging allows us to reconstruct the extinction map inside the nebula. Through polarimetric observations we attempt to disentangle the emission from the nebula from that of the accretion disk around V1647 Ori. We also attempt to resolve the small spatial scale structure of the illuminating source. Results: The energy distribution and temporal evolution of McNeils nebula mimic that of the illuminating source. The extinction map reveals a region of higher extinction in the direction of V1647 Ori. Excluding foreground extionction, the optical extinction due to McNeils nebula in the direction of V1647 Ori is A_V ~ 6.5 mag. The polarimetric measurement shows a compact high polarization emission around V1647 Ori. The percentage of K_S band linear polarization goes from 10 -- 20 %. The vectors are all well aligned with a position angle of 90 +/- 9 degree East of North. This may correspond to the orientation of a possible accretion disk around V1647 Ori. These findings suggest that the appearance of McNeils nebula is due to reflection of light by pre-existing material in the surroundings of V1647 Ori. We also report on the discovery of a new candidate brown dwarf or protostar in the vicinity of V1647 Ori as well as the presence of clumpy structure within HH 22A.
V582 Aur is a pre-main sequence FU Orionis type eruptive star, which entered a brightness minimum in 2016 March due to changes in the line-of-sight extinction. Here, we present and analyze new optical $B$, $V$, $R_C$ and $I_C$ band multiepoch observations and new near-infrared $J$, $H$ and $K_S$ band photometric measurements from 2018 January$-$2019 February, as well as publicly available mid-infrared WISE data. We found that the source shows a significant optical$-$near-infrared variability, and the current brightness minimum has not completely finished yet. If the present dimming originates from the same orbiting dust clump that caused a similar brightness variation in 2012, than our results suggest a viscous spreading of the dust particles along the orbit. Another scenario is that the current minimum is caused by a dust structure, that is entering and leaving the inner part of the system. The WISE measurements could be consistent with this scenario. Our long-term data, as well as an accretion disk modeling hint at a general fading of V582 Aur, suggesting that the source will reach the quiescent level in $sim$80 years.
167 - A. Kospal , P. Abraham , T. Prusti 2007
OO Serpentis is a deeply embedded pre-main sequence star that went into outburst in 1995 and gradually faded afterwards. Its eruption resembled the well-known FU Orionis-type or EX Lupi-type outbursts. Since very few such events have ever been documented at infrared wavelengths, our aim is to study the temporal evolution of OO Ser in the infrared. OO Ser was monitored with the Infrared Space Observatory starting 4 months after peak brightness and covering 20 months. In 2004-2006 we again observed OO Ser from the ground and complemented this dataset with archival Spitzer obsevations also from 2004. We analysed these data with special attention to source confusion and constructed light curves at 10 different wavelengths as well as spectral energy distributions. The outburst caused brightening in the whole infrared regime. According to the infrared light curves, OO Ser started a wavelength-independent fading after peak brightness. Later the flux decay became slower but stayed wavelength-independent. The fading is still ongoing, and current fading rates indicate that OO Ser will not return to quiescent state before 2011. The outburst timescale of OO Ser seems to be shorter than that of FUors, but longer than that of EXors. The outburst timescale and the moderate luminosity suggest that OO Ser is different from both FUors and EXors, and shows similarities to the recently erupted young star V1647 Ori. Based on its spectral energy distribution and bolometric temperature, OO Ser seems to be an early class I object, with an age of < 10^5 yr. The object is probably surrounded by an accretion disc and a dense envelope. Due to the shorter outburst timescales, the viscosity in the circumstellar disc of OO Ser is probably an order of magnitude higher than usual for FUors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا