Do you want to publish a course? Click here

Einstein@Home Discovery of 24 Pulsars in the Parkes Multi-beam Pulsar Survey

187   0   0.0 ( 0 )
 Added by Benjamin Knispel
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have conducted a new search for radio pulsars in compact binary systems in the Parkes multi-beam pulsar survey (PMPS) data, employing novel methods to remove the Doppler modulation from binary motion. This has yielded unparalleled sensitivity to pulsars in compact binaries. The required computation time of approximately 17000 CPU core years was provided by the distributed volunteer computing project Einstein@Home, which has a sustained computing power of about 1 PFlop/s. We discovered 24 new pulsars in our search, of which 18 were isolated pulsars, and six were members of binary systems. Despite the wide filterbank channels and relatively slow sampling time of the PMPS data, we found pulsars with very large ratios of dispersion measure (DM) to spin period. Among those is PSR J1748-3009, the millisecond pulsar with the highest known DM (approximately 420 pc/cc). We also discovered PSR J1840-0643, which is in a binary system with an orbital period of 937 days, the fourth largest known. The new pulsar J1750-2536 likely belongs to the rare class of intermediate-mass binary pulsars. Three of the isolated pulsars show long-term nulling or intermittency in their emission, further increasing this growing family. Our discoveries demonstrate the value of distributed volunteer computing for data-driven astronomy and the importance of applying new analysis methods to extensively searched data.



rate research

Read More

We report here the Einstein@Home discovery of PSR J1913+1102, a 27.3-ms pulsar found in data from the ongoing Arecibo PALFA pulsar survey. The pulsar is in a 4.95-hr double neutron star (DNS) system with an eccentricity of 0.089. From radio timing with the Arecibo 305-m telescope, we measure the rate of advance of periastron to be 5.632(18) deg/yr. Assuming general relativity accurately models the orbital motion, this corresponds to a total system mass of 2.875(14) solar masses, similar to the mass of the most massive DNS known to date, B1913+16, but with a much smaller eccentricity. The small eccentricity indicates that the second-formed neutron star (the companion of PSR J1913+1102) was born in a supernova with a very small associated kick and mass loss. In that case this companion is likely, by analogy with other systems, to be a light (1.2 solar mass) neutron star; the system would then be highly asymmetric. A search for radio pulsations from the companion yielded no plausible detections, so we cant yet confirm this mass asymmetry. By the end of 2016, timing observations should permit the detection of two additional post-Keplerian parameters: the Einstein delay, which will enable precise mass measurements and a verification of the possible mass asymmetry of the system, and the orbital decay due to the emission of gravitational waves, which will allow another test of the radiative properties of gravity. The latter effect will cause the system to coalesce in ~0.5 Gyr.
283 - B. Knispel , P. Lazarus , B. Allen 2011
We report the discovery of the 20.7 ms binary pulsar J1952+2630, made using the distributed computing project Einstein@Home in Pulsar ALFA survey observations with the Arecibo telescope. Follow-up observations with the Arecibo telescope confirm the binary nature of the system. We obtain a circular orbital solution with an orbital period of 9.4 hr, a projected orbital radius of 2.8 lt-s, and a mass function of f = 0.15 solar masses by analysis of spin period measurements. No evidence of orbital eccentricity is apparent; we set a 2-sigma upper limit e < 1.7e-3. The orbital parameters suggest a massive white dwarf companion with a minimum mass of 0.95 solar masses, assuming a pulsar mass of 1.4 solar masses. Most likely, this pulsar belongs to the rare class of intermediate mass binary pulsars. Future timing observations will aim to determine the parameters of this system further, measure relativistic effects, and elucidate the nature of the companion star.
106 - E. F. Keane 2009
We describe the steps involved in performing searches for sources of transient radio emission such as Rotating Radio Transients (RRATs), and present 10 new transient radio sources discovered in a re-analysis of the Parkes Multi-beam Pulsar Survey. Followup observations of each new source as well as one previously known source are also presented. The new sources suggest that the population of transient radio-emitting neutron stars, and hence the neutron star population in general, may be even larger than initially predicted. We highlight the importance of radio frequency interference excision for single-pulse searches. Also, we discuss some interesting properties of individual sources and consider the difficulties involved in precisely defining a RRAT and determining where they fit in with the other known classes of neutron stars.
Recycled pulsars are old ($gtrsim10^{8}$ yr) neutron stars that are descendants from close, interacting stellar systems. In order to understand their evolution and population, we must find and study the largest number possible of recycled pulsars in a way that is as unbiased as possible. In this work, we present the discovery and timing solutions of five recycled pulsars in binary systems (PSRs J0509$+$0856, J0709$+$0458, J0732$+$2314, J0824$+$0028, J2204$+$2700) and one isolated millisecond pulsar (PSR J0154$+$1833). These were found in data from the Arecibo 327-MHz Drift-Scan Pulsar Survey (AO327). All these pulsars have a low dispersion measure (DM) ($lesssim 45 , rm{pc}, cm^{-3}$), and have a DM-determined distance of $lesssim$ 3 kpc. Their timing solutions, have data spans ranging from 1 to $sim$ 7 years, include precise estimates of their spin and astrometric parameters, and for the binaries, precise estimates of their Keplerian binary parameters. Their orbital periods range from about 4 to 815 days and the minimum companion masses (assuming a pulsar mass of 1.4 $rm{M_{odot}}$) range from $sim$ 0.06--1.11 $rm{M_{odot}}$. For two of the binaries we detect post-Keplerian parameters; in the case of PSR~J0709$+$0458 we measure the component masses but with a low precision, in the not too distant future the measurement of the rate of advance of periastron and the Shapiro delay will allow very precise mass measurements for this system. Like several other systems found in the AO327 data, PSRs J0509$+$0854, J0709$+$0458 and J0732$+$2314 are now part of the NANOGrav timing array for gravitational wave detection.
382 - M. Kramer 2003
The Parkes multibeam pulsar survey has unlocked vast areas of the Galactic plane which were previously invisible to earlier low-frequency and less-sensitive surveys. The survey has discovered more than 600 new pulsars so far, including many that are young and exotic. In this paper we report the discovery of 200 pulsars for which we present positional and spin-down parameters, dispersion measures, flux densities and pulse profiles. A large number of these new pulsars are young and energetic, and we review possible associations of $gamma$-ray sources with the sample of about 1300 pulsars for which timing solutions are known. Based on a statistical analysis, we estimate that about $19pm6$ associations are genuine. The survey has also discovered 12 pulsars with spin properties similar to those of the Vela pulsar, nearly doubling the known population of such neutron stars. Studying the properties of all known `Vela-like pulsars, we find their radio luminosities to be similar to normal pulsars, implying that they are very inefficient radio sources. Finally, we review the use of the newly discovered pulsars as Galactic probes and discuss the implications of the new NE2001 Galactic electron density model for the determination of pulsar distances and luminosities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا