Do you want to publish a course? Click here

Primordial triples and collisions of massive stars

86   0   0.0 ( 0 )
 Added by Nickolas Moeckel
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Massive stars are known to have a high multiplicity, with examples of higher order multiples among the nearest and best studied objects. In this paper we study hierarchical multiple systems (an inner binary as a component of a wider binary) of massive stars in a clustered environment, in which a system with a size of 100--1000 au will undergo many close encounters during the short lifetime of a massive star. Using two types of N-body experiment we determine the post-formation collision probabilities of these massive hierarchies. We find that, depending on the specifics of the environment, the hierarchy, and the amount of time that is allowed to pass, tens of percent of hierarchies will experience a collision, typically between the two stars of the inner binary. In addition to collisions, clusters hosting a hierarchical massive system produce high velocity runaways at an enhanced rate. The primordial multiplicity specifics of massive stars appear to play a key role in the generation of these relatively small number events in cluster simulations, complicating their use as diagnostics of a clusters history.



rate research

Read More

Aims: We wish to study the origin of the X-ray emission of three massive stars in the Cyg OB2 association: Cyg OB2 #5, #8A, #12. Methods: To this aim, dedicated X-ray observations from XMM and Swift are used, as well as archival ROSAT and Suzaku data. Results: Our results on Cyg OB2 #8A improve the phase coverage of the orbit and confirm previous studies: the signature of a wind-wind collision is conspicuous. In addition, signatures of a wind-wind collision are also detected in Cyg OB2 #5, but the X-ray emission appears to be associated with the collision between the inner binary and the tertiary component orbiting it with a 6.7yr period, without a putative collision inside the binary. The X-ray properties strongly constrain the orbital parameters, notably allowing us to discard some proposed orbital solutions. To improve the knowledge of the orbit, we revisit the light curves and radial velocity of the inner binary, looking for reflex motion induced by the third star. Finally, the X-ray emission of Cyg OB2 #12 is also analyzed. It shows a marked decrease in recent years, compatible with either a wind-wind collision in a wide binary or the aftermath of a recent eruption.
Massive stars are powerful sources of radiation, stellar winds, and supernova explosions. The radiative and mechanical energies injected by massive stars into the interstellar medium (ISM) profoundly alter the structure and evolution of the ISM, which subsequently influences the star formation and chemical evolution of the host galaxy. In this review, we will use the Large Magellanic Cloud (LMC) as a laboratory to showcase effects of energy feedback from massive young stellar objects (YSOs) and mature stars. We will also use the Carina Nebula in the Galaxy to illustrate a multi-wavelength study of feedback from massive star.
177 - Ronny Blomme 2011
Detectable radio emission occurs during almost all phases of massive star evolution. I will concentrate on the thermal and non-thermal continuum emission from early-type stars. The thermal radio emission is due to free-free interactions in the ionized stellar wind material. Early ideas that this would lead to an easy and straightforward way of measuring the mass-loss rates were thwarted by the presence of clumping in the stellar wind. Multi-wavelength observations provide important constraints on this clumping, but do not allow its full determination. Non-thermal radio emission is associated with binarity. This conclusion was already known for some time for Wolf-Rayet stars and in recent years it has become clear that it is also true for O-type stars. In a massive-star binary, the two stellar winds collide and around the shocks a fraction of the electrons are accelerated to relativistic speeds. Spiralling in the magnetic field these electrons emit synchrotron radiation, which we detect as non-thermal radio emission. The many parameters that influence the resulting non-thermal radio fluxes make the modelling of these systems particularly challenging, but their study will provide interesting new insight into massive stars.
145 - C. S. Kochanek 2021
The fraction of stars which are in binaries or triples at the time of stellar death and the fraction of these systems which survive the supernova (SN) explosion are crucial constraints for evolution models and predictions for gravitational wave source populations. These fractions are also subject to direct observational determination. Here we search 10 supernova remnants (SNR) containing compact objects with proper motions for unbound binaries or triples using Gaia EDR3 and new statistical methods and tests for false positives. We confirm the one known example of an unbound binary, HD 37424 in G180.0-01.7, and find no other examples. Combining this with our previous searches for bound and unbound binaries, and assuming no bias in favor of finding interacting binaries, we find that 72.0% (52.2%-86.4%, 90% confidence) of SN producing neutron stars are not binaries at the time of explosion, 13.9% (5.4%-27.2%) produce bound binaries and 12.5% (2.8%-31.3%) produce unbound binaries. With a strong bias in favor of finding interacting binaries, the medians shift to 76.0% were not binaries at death, 9.5% leave bound and 13.2% leave unbound binaries. Of explosions that do not leave binaries, <18.9% can be fully unbound triples. These limits are conservatively for M>5Msun stars, although the mass limits for individual systems are significantly stronger. At birth, the progenitor of PSR J0538+2817 was probably a 13-19Msun star, and at the time of explosion it was probably a Roche limited, partially stripped star transferring mass to HD 37424 and then producing a Type IIL or IIb supernova.
Supermassive primordial stars are suspected to be the progenitors of the most massive quasars at z~6. Previous studies of such stars were either unable to resolve hydrodynamical timescales or considered stars in isolation, not in the extreme accretion flows in which they actually form. Therefore, they could not self-consistently predict their final masses at collapse, or those of the resulting supermassive black hole seeds, but rather invoked comparison to simple polytropic models. Here, we systematically examine the birth, evolution and collapse of accreting non-rotating supermassive stars under accretion rates of 0.01-10 solar masses per year, using the stellar evolution code KEPLER. Our approach includes post-Newtonian corrections to the stellar structure and an adaptive nuclear network, and can transition to following the hydrodynamic evolution of supermassive stars after they encounter the general relativistic instability. We find that this instability triggers the collapse of the star at masses of 150,000-330,000 solar masses for accretion rates of 0.1-10 solar masses per year, and that the final mass of the star scales roughly logarithmically with the rate. The structure of the star, and thus its stability against collapse, is sensitive to the treatment of convection, and the heat content of the outer accreted envelope. Comparison with other codes suggests differences here may lead to small deviations in the evolutionary state of the star as a function of time, that worsen with accretion rate. Since the general relativistic instability leads to the immediate death of these stars, our models place an upper limit on the masses of the first quasars at birth.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا