Do you want to publish a course? Click here

Modelling systemic price cojumps with Hawkes factor models

62   0   0.0 ( 0 )
 Added by Giacomo Bormetti
 Publication date 2013
  fields Financial
and research's language is English




Ask ChatGPT about the research

Instabilities in the price dynamics of a large number of financial assets are a clear sign of systemic events. By investigating a set of 20 high cap stocks traded at the Italian Stock Exchange, we find that there is a large number of high frequency cojumps. We show that the dynamics of these jumps is described neither by a multivariate Poisson nor by a multivariate Hawkes model. We introduce a Hawkes one factor model which is able to capture simultaneously the time clustering of jumps and the high synchronization of jumps across assets.

rate research

Read More

We consider a 2-dimensional marked Hawkes process with increasing baseline intensity in order to model prices on electricity intraday markets. This model allows to represent different empirical facts such as increasing market activity, random jump sizes but above all microstructure noise through the signature plot. This last feature is of particular importance for practitioners and has not yet been modeled on those particular markets. We provide analytic formulas for first and second moments and for the signature plot, extending the classic results of Bacry et al. (2013) in the context of Hawkes processes with random jump sizes and time dependent baseline intensity. The tractable model we propose is estimated on German data and seems to fit the data well. We also provide a result about the convergence of the price process to a Brownian motion with increasing volatility at macroscopic scales, highlighting the Samuelson effect.
We show that univariate and symmetric multivariate Hawkes processes are only weakly causal: the true log-likelihoods of real and reversed event time vectors are almost equal, thus parameter estimation via maximum likelihood only weakly depends on the direction of the arrow of time. In ideal (synthetic) conditions, tests of goodness of parametric fit unambiguously reject backward event times, which implies that inferring kernels from time-symmetric quantities, such as the autocovariance of the event rate, only rarely produce statistically significant fits. Finally, we find that fitting financial data with many-parameter kernels may yield significant fits for both arrows of time for the same event time vector, sometimes favouring the backward time direction. This goes to show that a significant fit of Hawkes processes to real data with flexible kernels does not imply a definite arrow of time unless one tests it.
We test three common information criteria (IC) for selecting the order of a Hawkes process with an intensity kernel that can be expressed as a mixture of exponential terms. These processes find application in high-frequency financial data modelling. The information criteria are Akaikes information criterion (AIC), the Bayesian information criterion (BIC) and the Hannan-Quinn criterion (HQ). Since we work with simulated data, we are able to measure the performance of model selection by the success rate of the IC in selecting the model that was used to generate the data. In particular, we are interested in the relation between correct model selection and underlying sample size. The analysis includes realistic sample sizes and parameter sets from recent literature where parameters were estimated using empirical financial intra-day data. We compare our results to theoretical predictions and similar empirical findings on the asymptotic distribution of model selection for consistent and inconsistent IC.
Mid-price movement prediction based on limit order book (LOB) data is a challenging task due to the complexity and dynamics of the LOB. So far, there have been very limited attempts for extracting relevant features based on LOB data. In this paper, we address this problem by designing a new set of handcrafted features and performing an extensive experimental evaluation on both liquid and illiquid stocks. More specifically, we implement a new set of econometrical features that capture statistical properties of the underlying securities for the task of mid-price prediction. Moreover, we develop a new experimental protocol for online learning that treats the task as a multi-objective optimization problem and predicts i) the direction of the next price movement and ii) the number of order book events that occur until the change takes place. In order to predict the mid-price movement, the features are fed into nine different deep learning models based on multi-layer perceptrons (MLP), convolutional neural networks (CNN) and long short-term memory (LSTM) neural networks. The performance of the proposed method is then evaluated on liquid and illiquid stocks, which are based on TotalView-ITCH US and Nordic stocks, respectively. For some stocks, results suggest that the correct choice of a feature set and a model can lead to the successful prediction of how long it takes to have a stock price movement.
Coronavirus (COVID-19) creates fear and uncertainty, hitting the global economy and amplifying the financial markets volatility. The oil price reaction to COVID-19 was gradually accommodated until March 09, 2020, when, 49 days after the release of the first coronavirus monitoring report by the World Health Organization (WHO), Saudi Arabia floods the market with oil. As a result, international prices drop with more than 20% in one single day. Against this background, the purpose of this paper is to investigate the impact of COVID-19 numbers on crude oil prices, while controlling for the impact of financial volatility and the United States (US) economic policy uncertainty. Our ARDL estimation shows that the COVID-19 daily reported cases of new infections have a marginal negative impact on the crude oil prices in the long run. Nevertheless, by amplifying the financial markets volatility, COVID-19 also has an indirect effect on the recent dynamics of crude oil prices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا