No Arabic abstract
We demonstrate a lock-in particle tracking scheme in optical tweezers based on stroboscopic modulation of an illuminating optical field. This scheme is found to evade low frequency noise sources while otherwise producing an equivalent position measurement to continuous measurement. This was demonstrated, and found to yield on average 20dB of noise suppression in the frequency range 10-5000 Hz, where low frequency laser noise and electronic noise was significant, and 35 dB of noise suppression in the range 550-710 kHz where laser relaxation oscillations introduced laser noise. The setup is simple, and compatible with any trapping optics.
A setup is proposed to enhance tracking of very small particles, by using optical tweezers embedded within a Sagnac interferometer. The achievable signal-to-noise ratio is shown to be enhanced over that for a standard optical tweezers setup. The enhancement factor increases asymptotically as the interferometer visibility approaches 100%, but is capped at a maximum given by the ratio of the trapping field intensity to the detector saturation threshold. For an achievable visibility of 99%, the signal-to-noise ratio is enhanced by a factor of 200, and the minimum trackable particle size is 2.4 times smaller than without the interferometer.
A general quantum limit to the sensitivity of particle position measurements is derived following the simple principle of the Heisenberg microscope. The value of this limit is calculated for particles in the Rayleigh and Mie scattering regimes, and with parameters which are relevant to optical tweezers experiments. The minimum power required to observe the zero-point motion of a levitating bead is also calculated, with the optimal particle diameter always smaller than the wavelength. We show that recent optical tweezers experiments are within two orders of magnitude of quantum limited sensitivity, suggesting that quantum optical resources may soon play an important role in high sensitivity tracking applications.
Precise control of particle positioning is desirable in many optical propulsion and sorting applications. Here, we develop an integrated platform for particle manipulation consisting of a combined optical nanofibre and optical tweezers system. Individual silica microspheres were introduced to the nanofibre at arbitrary points using the optical tweezers, thereby producing pronounced dips in the fibre transmission. We show that such consistent and reversible transmission modulations depend on both particle and fibre diameter, and can be used as a reference point for in situ nanofibre or particle size measurement. Thence, we combine scanning electron microscope (SEM) size measurements with nanofibre transmission data to provide calibration for particle-based fibre assessment. This integrated optical platform provides a method for selective evanescent field manipulation of micron-sized particles and facilitates studies of optical binding and light-particle interaction dynamics.
We show that the optical force field in optical tweezers with elliptically polarized beams has the opposite handedness for a wide range of particle sizes and for the most common configurations. Our method is based on the direct observation of the particle equilibrium position under the effect of a transverse Stokes drag force, and its rotation around the optical axis by the mechanical effect of the optical torque. We find overall agreement with theory, with no fitting, provided that astigmatism, which is characterized separately, is included in the theoretical description. Our work opens the way for characterization of the trapping parameters, such as the microsphere complex refractive index and the astigmatism of the optical system, from measurements of the microsphere rotation angle.
Particle sensing in optical tweezers systems provides information on the position, velocity and force of the specimen particles. The conventional quadrant detection scheme is applied ubiquitously in optical tweezers experiments to quantify these parameters. In this paper we show that quadrant detection is non-optimal for particle sensing in optical tweezers and propose an alternative optimal particle sensing scheme based on spatial homodyne detection. A formalism for particle sensing in terms of transverse spatial modes is developed and numerical simulations of the efficacy of both quadrant and spatial homodyne detection are shown. We demonstrate that an order of magnitude improvement in particle sensing sensitivity can be achieved using spatial homodyne over quadrant detection.