Do you want to publish a course? Click here

The monochromator beamline at FLASH: performance, capabilities and upgrade plans

312   0   0.0 ( 0 )
 Added by Natalia Gerasimova
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The monochromator beamline at the FLASH facility at DESY is the worldwide first XUV monochromator beamline operational on a free electron laser (FEL)source. Being a single-user machine, FLASH demands a high flexibility of the instrumentation to fulfil the needs of diverse experiments performed by a multidisciplinary user community. Thus, the beamline has not only been used for high-resolution spectroscopy that it was originally designed for, but also for pump-probe experiments controlling the temporal-spectral properties at moderate resolution, and as a filter for high harmonics of the FEL at very low resolution. The present performance and capabilities of the beamline are discussed with emphasis on particularities arising from the nature of the FEL source, and current developments are presented aiming to enhance its capabilities for accommodating a wide variety of experiments.



rate research

Read More

At the 120-GeV proton accelerator facilities of Fermilab, USA, water samples were collected from the cooling water systems for the target, magnetic horn1, magnetic horn2, decay pipe, and hadron absorber at the NuMI beamline as well as from the cooling water systems for the collection lens, pulse magnet and collimator, and beam absorber at the antiproton production target station, just after the shutdown of the accelerators for a maintenance period. Specific activities of {gamma} -emitting radionuclides and 3H in these samples were determined using high-purity germanium detectors and a liquid scintillation counter. The cooling water contained various radionuclides depending on both major and minor materials in contact with the water. The activity of the radionuclides depended on the presence of a deionizer. Specific activities of 3H were used to estimate the residual rates of 7Be. The estimated residual rates of 7Be in the cooling water were approximately 5% for systems without deionizers and less than 0.1% for systems with deionizers, although the deionizers function to remove 7Be from the cooling water.
The Long Baseline Neutrino Facility (LBNF) project will build a beamline located at Fermilab to create and aim an intense neutrino beam of appropriate energy range toward the DUNE detectors at the SURF facility in Lead, South Dakota. Neutrino production starts in the Target Station, which consists of a solid target, magnetic focusing horns, and the associated sub-systems and shielding infrastructure. Protons hit the target producing mesons which are then focused by the horns into a helium-filled decay pipe where they decay into muons and neutrinos. The target and horns are encased in actively cooled steel and concrete shielding in a chamber called the target chase. The reference design chase is filled with air, but nitrogen and helium are being evaluated as alternatives. A replaceable beam window separates the decay pipe from the target chase. The facility is designed for initial operation at 1.2 MW, with the ability to upgrade to 2.4 MW, and is taking advantage of the experience gained by operating Fermilabs NuMI facility. We discuss here the design status, associated challenges, and ongoing R&D and physics-driven component optimization of the Target Station.
The Muon g-2 Experiment plans to use the Fermilab Recycler Ring for forming the proton bunches that hit its production target. The proposed scheme uses one RF system, 80 kV of 2.5 MHz RF. In order to avoid bunch rotations in a mismatched bucket, the 2.5 MHz is ramped adiabatically from 3 to 80 kV in 90 ms. In this study, the interaction of the primary proton beam with the production target for the Muon g-2 Experiment is numerically examined.
We describe a high-performance, compact optical frequency standard based on a microfabricated Rb vapor cell and a low-noise, external cavity diode laser operating on the Rb two-photon transition at 778 nm. The optical standard achieves an instability of 1.8x10$^{-13}$/$sqrt{tau}$ for times less than 100 s and a flicker noise floor of 1x10$^{-14}$ out to 6000 s. At long integration times, the instability is limited by variations in optical probe power and the AC Stark shift. The retrace was measured to 5.7x10$^{-13}$ after 30 hours of dormancy. Such a simple, yet high-performance optical standard could be suitable as an accurate realization of the SI meter or, if coupled with an optical frequency comb, as a compact atomic clock comparable to a hydrogen maser.
The ENUBET ERC project (2016-2021) is studying a narrow band neutrino beam where lepton production can be monitored at single particle level in an instrumented decay tunnel. This would allow to measure $ u_{mu}$ and $ u_{e}$ cross sections with a precision improved by about one order of magnitude compared to present results. In this proceeding we describe a first realistic design of the hadron beamline based on a dipole coupled to a pair of quadrupole triplets along with the optimisation guidelines and the results of a simulation based on G4beamline. A static focusing design, though less efficient than a horn-based solution, results several times more efficient than originally expected. It works with slow proton extractions reducing drastically pile-up effects in the decay tunnel and it paves the way towards a time-tagged neutrino beam. On the other hand a horn-based transferline would ensure higher yields at the tunnel entrance. The first studies conducted at CERN to implement the synchronization between a few ms proton extraction and a horn pulse of 2-10 ms are also described.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا