Do you want to publish a course? Click here

A Ginzburg-Landau model for the expansion of a dodecahedral viral capsid

140   0   0.0 ( 0 )
 Added by Emilio Zappa
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a Ginzburg-Landau model for the expansion of a dodecahedral viral capsid during infection or maturation. The capsid is described as a dodecahedron whose faces, meant to model rigid capsomers, are free to move independent of each other, and has therefore twelve degrees of freedom. We assume that the energy of the system is a function of the twelve variables with icosahedral symmetry. Using techniques of the theory of invariants, we expand the energy as the sum of invariant polynomials up to fourth order, and classify its minima in dependence of the coefficients of the Ginzburg-Landau expansion. Possible conformational changes of the capsid correspond to symmetry breaking of the equilibrium closed form. The results suggest that the only generic transition from the closed state leads to icosahedral expanded form. Our approach does not allow to study the expansion pathway, which is likely to be non-icosahedral.



rate research

Read More

Multiple-spiral-wave solutions of the general cubic complex Ginzburg-Landau equation in bounded domains are considered. We investigate the effect of the boundaries on spiral motion under homogeneous Neumann boundary conditions, for small values of the twist parameter $q$. We derive explicit laws of motion for rectangular domains and we show that the motion of spirals becomes exponentially slow when the twist parameter exceeds a critical value depending on the size of the domain. The oscillation frequency of multiple-spiral patterns is also analytically obtained.
This paper develops a method to carry out the large-$N$ asymptotic analysis of a class of $N$-dimensional integrals arising in the context of the so-called quantum separation of variables method. We push further ideas developed in the context of random matrices of size $N$, but in the present problem, two scales $1/N^{alpha}$ and $1/N$ naturally occur. In our case, the equilibrium measure is $N^{alpha}$-dependent and characterised by means of the solution to a $2times 2$ Riemann--Hilbert problem, whose large-$N$ behavior is analysed in detail. Combining these results with techniques of concentration of measures and an asymptotic analysis of the Schwinger-Dyson equations at the distributional level, we obtain the large-$N$ behavior of the free energy explicitly up to $o(1)$. The use of distributional Schwinger-Dyson is a novelty that allows us treating sufficiently differentiable interactions and the mixing of scales $1/N^{alpha}$ and $1/N$, thus waiving the analyticity assumptions often used in random matrix theory.
We discuss a basis set developed to calculate perturbation coefficients in an expansion of the general N-body problem. This basis has two advantages. First, the basis is complete order-by-order for the perturbation series. Second, the number of independent basis tensors spanning the space for a given order does not scale with N, the number of particles, despite the generality of the problem. At first order, the number of basis tensors is 23 for all N although the problem at first order scales as N^6. The perturbation series is expanded in inverse powers of the spatial dimension. This results in a maximally symmetric configuration at lowest order which has a point group isomorphic with the symmetric group, S_N. The resulting perturbation series is order-by-order invariant under the N! operations of the S_N point group which is responsible for the slower than exponential growth of the basis. In this paper, we perform the first test of this formalism including the completeness of the basis through first order by comparing to an exactly solvable fully-interacting problem of N particles with a two-body harmonic interaction potential.
213 - Akira Sakai 2014
Using the Griffiths-Simon construction of the $varphi^4$ model and the lace expansion for the Ising model, we prove that, if the strength $lambdage0$ of nonlinearity is sufficiently small for a large class of short-range models in dimensions $d>4$, then the critical $varphi^4$ two-point function $langlevarphi_ovarphi_xrangle_{mu_c}$ is asymptotically $|x|^{2-d}$ times a model-dependent constant, and the critical point is estimated as $mu_c=mathscr{hat J}-fraclambda2langlevarphi_o^2rangle_{mu_c}+O(lambda^2)$, where $mathscr{hat J}$ is the massless point for the Gaussian model.
We present a short review of our studies of disorder influence upon Ginzburg - Landau expansion coefficients in Anderson - Hubbard model with attraction in the framework of the generalized DMFT+$Sigma$ approximation. A wide range of attractive potentials $U$ is considered - from weak coupling limit, where superconductivity is described by BCS model, to the limit of very strong coupling, where superconducting transition is related to Bose - Einstein condensation (BEC) of compact Cooper pairs, which are formed at temperatures significantly higher than the temperature of superconducting transition, as well as the wide range of disorders - from weak to strong, when the system is in the vicinity of Anderson transition. For the same range of parameters we study in detail the temperature behavior of orbital and paramagnetic upper critical field $H_{c2}(T)$, which demonstrates the anomalies both due to the growth of attractive potential and the effects of strong disordering.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا