Do you want to publish a course? Click here

Hunting for asymptotia at LHC

249   0   0.0 ( 0 )
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

We discuss whether the behaviour of some hadronic quantities, such as the total cross-section, the ratio of the elastic to the total cross-section, are presently exhibiting the asymptotic behaviour expected at very large energies. We find phenomenological evidence that at LHC7 there is still space for further evolution.



rate research

Read More

We outline a strategy of how to search for QCD instantons of invariant mass 20 -- 60 GeV in diffractive events in low luminosity runs at the LHC. We show that by imposing appropriate selection criteria on the final states, one can select the kinematic regime where the instanton signal exceeds the background by a factor of at least 8. In spite of the relatively strong cuts that we impose on the total transverse energy and the number of charged tracks, $sum_i E_{T,i}>15$ GeV, $N_{rm ch}>20$ measured within the $0<eta<2$ interval and excluding events with high $p_{T}$ particles, the expected cross-section is sufficiently large to study the instanton production in the events with Large Rapidity Gaps at low luminosities, thus avoiding problems with pile-up. The paper also includes an updated computation of instanton cross-sections and other parameters relevant for the ongoing studies.
The agreement between calculations inspired by the resummation of energy logarithms, known as BFKL approach, and experimental data in the semi-hard sector of QCD has become manifest after a wealthy series of phenomenological analyses. However, the contingency that the same data could be concurrently portrayed at the hand of fixed-order, DGLAP-based calculations, has been pointed out recently, but not yet punctually addressed. Taking advantage of the richness of configurations gained by combining the acceptances of CMS and CASTOR detectors, we give results in the full next-to-leading logarithmic approximation of cross sections, azimuthal correlations and azimuthal distributions for three distinct semi-hard processes, each of them featuring a peculiar final-state exclusiveness. Then, making use of disjoint intervals for the transverse momenta of the emitted objects, i.e. $kappa$-windows, we clearly highlight how high-energy resummed and fixed-order driven predictions for semi-hard sensitive observables can be decisively discriminated in the kinematic ranges typical of current and forthcoming analyses at the LHC. The scale-optimization issue is also introduced and explored, while the uncertainty coming from the use of different PDF and FF set is deservedly handled. Finally, a brief overview of JETHAD, a numerical tool recently developed, suited for the computation of inclusive semi-hard reactions is provided.
101 - R. Leonardi , L. Alunni , F. Romeo 2015
We investigate the search for heavy Majorana neutrinos stemming from a composite model scenario at the upcoming LHC Run II at a center of mass energy of 13 TeV. While previous studies of the composite Majorana neutrino were focussed on gauge interactions via magnetic type transition coupling between ordinary and heavy fermions (with mass $m^*$) here we complement the composite model with contact interactions at the energy scale $Lambda$ and we find that the production cross sections are dominated by such contact interactions by roughly two/three orders of magnitude. This mechanism provides therefore very interesting rates at the prospected luminosities. We study the same sign di-lepton and di-jet signature ($pp to ellell jj$) and perform a fast detector simulation based on Delphes. We compute 3$sigma$ and 5$sigma$ contour plots of the statistical significance in the parameter space ($Lambda,m^*$). We find that the potentially excluded regions at $sqrt{s} =13$ TeV are quite larger than those excluded so far at Run I considering searches with other signatures.
New physics close to the electroweak scale is well motivated by a number of theoretical arguments. However, colliders, most notably the Large Hadron Collider (LHC), have failed to deliver evidence for physics beyond the Standard Model. One possibility for how new electroweak-scale particles could have evaded detection so far is if they carry only electroweak charge, i.e. are color neutral. Future $e^+e^-$ colliders are prime tools to study such new physics. Here, we investigate the sensitivity of $e^+e^-$ colliders to scalar partners of the charged leptons, known as sleptons in supersymmetric extensions of the Standard Model. In order to allow such scalar lepton partners to decay, we consider models with an additional neutral fermion, which in supersymmetric models corresponds to a neutralino. We demonstrate that future $e^+e^-$ colliders would be able to probe most of the kinematically accessible parameter space, i.e. where the mass of the scalar lepton partner is less than half of the colliders center-of-mass energy, with only a few days of data. Besides constraining more general models, this would allow to probe some well motivated dark matter scenarios in the Minimal Supersymmetric Standard Model, in particular the incredible bulk and stau co-annihilation scenarios.
The MoEDAL experiment at the LHC is optimised to detect highly-ionising particles such as magnetic monopoles, dyons and (multiply) electrically-charged stable massive particles predicted in a number of theoretical scenarios. MoEDAL, deployed in the LHCb cavern, combines passive nuclear track detectors with magnetic monopole trapping volumes, while backgrounds are being monitored with an array of MediPix detectors. The detector concept and its physics reach is presented with emphasis given to recent results on monopoles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا