We show how to lift solutions of Euclidean Einstein-Maxwell equations with non-zero cosmological constant to solutions of eleven-dimensional supergravity theory with non-zero fluxes. This yields a class of 11D metrics given in terms of solutions to $SU(infty)$ Toda equation. We give one example of a regular solution and analyse its supersymmetry. We also analyse the integrability conditions of the Killing spinor equations of N=2 minimal gauged supergravity in four Euclidean dimensions. We obtain necessary conditions for the existence of additional Killing spinors, corresponding to enhancement of supersymmetry. If the Weyl tensor is anti-self-dual then the supersymmetric metrics satisfying these conditions are given by separable solutions to the $SU(infty)$ Toda equation. Otherwise they are ambi-Kahler and are conformally equivalent to Kahler metrics of Calabi type or to product metrics on two Riemann surfaces.