No Arabic abstract
In a sample of elliptical galaxies that span a large range of mass, a previously unused Ca index, CaHK, shows that [Ca/Fe] and [Ca/Mg] systematically decrease with increasing elliptical galaxy mass. Metallicity mixtures, age effects, stellar chromospheric emission effects, and low-mass initial mass function (IMF) boost effects are ruled out as causes. A [Ca/Fe] range of less than 0.3 dex is sufficient to blanket all observations. Feature gradients within galaxies imply a global Ca deficit rather than a radius-dependent phenomenon. Some, but not all, Type II supernova nucleosynthetic yield calculations indicate a decreasing Ca/Fe yield ratio in more massive supernovae, lending possible support to the hypothesis that more massive elliptical galaxies have an IMF that favors more massive stars. No Type II supernova nucleosynthetic yield calculations show significant leverage in the Ca/Fe ratio as a function of progenitor metallicity. Therefore, it seems unlikely that the Ca behavior can be explained as a built-in metallicity effect, and this argues against explanations that vary only the Type II to Type Ia supernova enrichment ratio.
The alpha element to iron peak element ratio, for example [Mg/Fe], is a commonly applied indicator of the galaxy star formation timescale (SFT) since the two groups of elements are mainly produced by different types of supernovae that explode over different timescales. However, it is insufficient to consider only [Mg/Fe] when estimating the SFT. The [Mg/Fe] yield of a stellar population depends on its metallicity. Therefore, it is possible for galaxies with different SFTs and at the same time different total metallicity to have the same [Mg/Fe]. This effect has not been properly taken into consideration in previous studies. In this study, we assume the galaxy-wide stellar initial mass function (gwIMF) to be canonical and invariant. We demonstrate that our computation code reproduces the SFT estimations of previous studies where only the [Mg/Fe] observational constraint is applied. We then demonstrate that once both metallicity and [Mg/Fe] observations are considered, a more severe downsizing relation is required. This means that either low-mass ellipticals have longer SFTs (> 4 Gyr for galaxies with mass below $10^{10}$ M$_odot$) or massive ellipticals have shorter SFTs ($approx 200$ Myr for galaxies more massive than $10^{11}$ M$_odot$) than previously thought. This modification increases the difficulty in reconciling such SFTs with other observational constraints. We show that applying different stellar yield modifications does not relieve this formation timescale problem. The quite unrealistically short SFT required by [Mg/Fe] and total metallicity would be prolonged if a variable stellar gwIMF were assumed. Since a systematically varying gwIMF has been suggested by various observations this could present a natural solution to this problem.
The kinematics of stars and planetary nebulae in early type galaxies provide vital clues to the enigmatic physics of their dark matter halos. We fit published data for fourteen such galaxies using a spherical, self-gravitating model with two components: (1) a Sersic stellar profile fixed according to photometric parameters, and (2) a polytropic dark matter halo that conforms consistently to the shared gravitational potential. The polytropic equation of state can describe extended theories of dark matter involving self-interaction, non-extensive thermostatistics, or boson condensation (in a classical limit). In such models, the flat-cored mass profiles widely observed in disc galaxies are due to innate dark physics, regardless of any baryonic agitation. One of the natural parameters of this scenario is the number of effective thermal degrees of freedom of dark matter (F_d) which is proportional to the dark heat capacity. By default we assume a cosmic ratio of baryonic and dark mass. Non-Sersic kinematic ideosyncrasies and possible non-sphericity thwart fitting in some cases. In all fourteen galaxies the fit with a polytropic dark halo improves or at least gives similar fits to the velocity dispersion profile, compared to a stars-only model. The good halo fits usually prefer F_d values from six to eight. This range complements the recently inferred limit of 7<F_d<10 (Saxton & Wu), derived from constraints on galaxy cluster core radii and black hole masses. However a degeneracy remains: radial orbital anisotropy or a depleted dark mass fraction could shift our models preference towards lower F_d; whereas a loss of baryons would favour higher F_d.
The presence of dust strongly affects the way we see galaxies and also the chemical abundances we measure in gas. It is therefore important to study he chemical evolution of galaxies by taking into account dust evolution. We aim at performing a detailed study of abundance ratios of high redshift objects and their dust properties. We focus on Lyman-Break galaxies (LBGs) and Quasar (QSO) hosts and likely progenitors of low- and high-mass present-day elliptical galaxies, respectively. We have adopted a chemical evolution model for elliptical galaxies taking account the dust production from low and intermediate mass stars, supernovae Ia, supernovae II, QSOs and both dust destruction and accretion processes. By means of such a model we have followed the chemical evolution of ellipticals of different baryonic masses. Our model complies with chemical downsizing. We made predictions for the abundance ratios versus metallicity trends for models of differing masses that can be used to constrain the star formation rate, initial mass function and dust mass in observed galaxies. We predict the existence of a high redshift dust mass-stellar mass relationship. We have found a good agreement with the properties of LBGs if we assume that they formed at redshift z=2-4. In particular, a non-negligible amount of dust is needed to explain the observed abundance pattern. We studied the QSO SDSS J114816, one of the most distant QSO ever observed (z=6.4), and we have been able to reproduce the amount of dust measured in this object. The dust is clearly due to the production from supernovae and the most massive AGB stars as well as from the grain growth in the interstellar medium. The QSO dust is likely to dominate only in the very central regions of the galaxies and during the early development of the galactic wind.
The formation and evolution of galaxies is imprinted on their stellar population radial gradients. Two recent articles present conflicting results concerning the mass dependence of the metallicity gradients for early-type dwarf galaxies. On one side, Spolaor et al. show a tight positive correlation between the total metallicity, Z/H and the mass. On the other side, in a distinct sample, we do not find any trend involving Fe/H (Koleva et al.). In order to investigate the origin of the discrepancy, we examine various factors that may affect the determination of the gradients: namely the sky subtraction and the signal-to-noise ratio. We conclude that our detection of gradients are well above the possible analysis biases. Then, we measured the Mg/Fe relative abundance profile and found moderate gradients. The derived Z/H gradients scatter around -0.4 dex/r_e. The two samples contain the same types of objects and the reason of the disagreement is still not understood. Based on observations made with ESO telescopes at La Silla Paranal observatory under program ID076.B-0196.
Massive early-type galaxies have undergone dramatic structural evolution over the last 10 Gyr. A companion paper shows that nearby elliptical galaxies with M*>1.3x10^{11} M_sun generically contain three photometric subcomponents: a compact inner component with effective radius Re<1 kpc, an intermediate-scale middle component with Re~2.5 kpc, and an extended outer envelope with $R_e approx 10$ kpc. Here we attempt to relate these substructures with the properties of early-type galaxies observed at higher redshifts. We find that a hypothetical structure formed from combining the inner plus the middle components of local ellipticals follows a strikingly tight stellar mass-size relation, one that resembles the distribution of early-type galaxies at z~1.5. Outside of the central kpc, the median stellar mass surface density profiles of this composite structure agree closest with those of massive galaxies that have similar cumulative number density at 1.5<z<2.0 within the uncertainty. We propose that the central substructures in nearby ellipticals are the evolutionary descendants of the red nuggets formed under highly dissipative (wet) conditions at high redshifts, as envisioned in the initial stages of the two-phase formation scenario recently advocated for massive galaxies. Subsequent accretion, plausibly through dissipationless (dry) minor mergers, builds the outer regions of the galaxy identified as the outer envelope in our decomposition. The large scatter exhibited by this component on the stellar mass-size plane testifies to the stochastic nature of the accretion events.