Do you want to publish a course? Click here

Suppression of high-pT heavy-flavour particles in Pb-Pb collisions at the LHC, measured with the ALICE detector

207   0   0.0 ( 0 )
 Added by Andrea Dainese
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

The ALICE experiment studies nucleus-nucleus collisions at the LHC in order to investigate the properties of QCD matter at extreme energy densities. The measurement of open charm and open beauty production allows one to probe the mechanisms of heavy-quark propagation, energy loss and hadronization in the hot and dense medium formed in high-energy nucleus-nucleus collisions. In particular, in-medium energy loss is predicted to be different for massless partons (light quarks and gluons) and heavy quarks at moderate momentum. The ALICE apparatus allows us to measure open heavy-flavour particles in several decay channels and with a wide phase-space coverage. We present the results on the nuclear modification factors for heavy-flavour particle production in Pb-Pb collisions at sqrtsNN=2.76 TeV. Using proton-proton and lead-lead collision samples at sqrts=2.76 and 7 TeV and at sqrtsNN=2.76 TeV, respectively, nuclear modification factors R_AA(pT) were measured for D mesons at central rapidity (via displaced decay vertex reconstruction), and for electrons and muons from heavy-flavour decays, at central and forward rapidity, respectively. A large suppression is observed, by a factor 2.5-4 in central Pb--Pb collisions with respect to the pp reference, in the high-pT region, indicating a strong in-medium energy loss of heavy quarks.



rate research

Read More

132 - Andrea Dainese 2011
We present the first results from the ALICE experiment on the nuclear modification factors for heavy-flavour hadron production in Pb-Pb collisions at sqrt{s_NN}=2.76 TeV. Using proton-proton and lead-lead collision samples at sqrt{s}=7 TeV and sqrt{s_NN}=2.76 TeV, respectively, nuclear modification factors R_AA(pt) were measured for D mesons at central rapidity (via displaced decay vertex reconstruction), and for electrons and muons, at central and forward rapidity, respectively.
108 - A. Dubla 2017
Heavy quarks, i.e. charm and beauty, are produced on a shorter time scale with respect to the strongly-interacting matter produced in high-energy heavy-ion collisions. Therefore, they are unique probes to study the mechanisms of parton energy loss, hadronisation and thermalization in the hot and dense state of matter. The nuclear modification factor ($R_{rm AA}$) and the elliptic flow ($v_{2}$) are two of the main experimental observables that allow us to investigate the interaction strength of heavy quarks with the medium. The most recent results on heavy-flavour production and elliptic flow measured by the ALICE collaboration in Pb--Pb collisions at $sqrt{s_mathrm{NN}}$ = 2.76 TeV will be discussed.
We present the expected ALICE performance for the measurement of the p_t-differential cross section of electrons from beauty decays in central Pb-Pb collisions at the LHC.
110 - Giacomo Ortona 2012
A Large Ion Collider Experiment (ALICE) is one of the four large experiments at the Large Hadron Collider (LHC), and it is dedicated to the study of ultra-relativistic heavy-ion collisions, with the goal of investigating the properties of the high-density state of QCD matter produced in these collisions. The study of D meson production azimuthal anisotropy and the measurement of their elliptic flow (v2) can provide insight on the degree of thermalisation of charm quarks in the medium and on the charm hadronization mechanism. We present the measurement of the D+ and D0 meson v2 in Pb-Pb collisions at sqrt(sNN)=2.76 TeV at the LHC with ALICE. We discuss the details of the analysis and we show the results obtained from data samples collected in 2011.
The ALICE collaboration at the LHC has measured the transverse momentum spectra of neutral pions via their two photon decay in pp and Pb$-$Pb collisions at $sqrt{s_{NN}}=2.76$ TeV over a broad transverse momentum range with different subsystems: with the electromagnetic calorimeters PHOS and EMCAL and with photon
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا