Do you want to publish a course? Click here

BoA: a versatile software for bolometer data reduction

202   0   0.0 ( 0 )
 Added by Frederic Schuller
 Publication date 2012
  fields Physics
and research's language is English
 Authors F. Schuller




Ask ChatGPT about the research

Together with the development of the Large APEX Bolometer Camera (LABOCA) for the Atacama Pathfinder Experiment (APEX), a new data reduction package has been written. This software naturally interfaces with the telescope control system, and provides all functionalities for the reduction, analysis and visualization of bolometer data. It is used at APEX for real time processing of observations performed with LABOCA and other bolometer arrays, providing feedback to the observer. Written in an easy-to-script language, BoA is also used offline to reduce APEX continuum data. In this paper, the general structure of this software is presented, and its online and offline capabilities are described.



rate research

Read More

We present the third release of the AMBER data reduction software by the JMMC. This software is based on core algorithms optimized after several years of operation. An optional graphic interface in a high level language allows the user to control the process step by step or in a completely automatic manner. Ongoing improvement is the implementation of a robust calibration scheme, making use of the full calibration sets available during the night. The output products are standard OI-FITS files, which can be used directly in high level software like model fitting or image reconstruction tools. The software performances are illustrated on a full data set of calibrators observed with AMBER during 5 years taken in various instrumental setup.
The Polarimetric and Helioseismic Imager (PHI) is the first deep-space solar spectropolarimeter, on-board the Solar Orbiter (SO) space mission. It faces: stringent requirements on science data accuracy, a dynamic environment, and severe limitations on telemetry volume. SO/PHI overcomes these restrictions through on-board instrument calibration and science data reduction, using dedicated firmware in FPGAs. This contribution analyses the accuracy of a data processing pipeline by comparing the results obtained with SO/PHI hardware to a reference from a ground computer. The results show that for the analysed pipeline the error introduced by the firmware implementation is well below the requirements of SO/PHI.
Data from complex modern astronomical instruments often consist of a large number of different science and calibration files, and their reduction requires a variety of software tools. The execution chain of the tools represents a complex workflow that needs to be tuned and supervised, often by individual researchers that are not necessarily experts for any specific instrument. The efficiency of data reduction can be improved by using automatic workflows to organise data and execute the sequence of data reduction steps. To realize such efficiency gains, we designed a system that allows intuitive representation, execution and modification of the data reduction workflow, and has facilities for inspection and interaction with the data. The European Southern Observatory (ESO) has developed Reflex, an environment to automate data reduction workflows. Reflex is implemented as a package of customized components for the Kepler workflow engine. Kepler provides the graphical user interface to create an executable flowchart-like representation of the data reduction process. Key features of Reflex are a rule-based data organiser, infrastructure to re-use results, thorough book-keeping, data progeny tracking, interactive user interfaces, and a novel concept to exploit information created during data organisation for the workflow execution. Reflex includes novel concepts to increase the efficiency of astronomical data processing. While Reflex is a specific implementation of astronomical scientific workflows within the Kepler workflow engine, the overall design choices and methods can also be applied to other environments for running automated science workflows.
We present in this paper the general formalism and data processing steps used in the MATISSE data reduction software, as it has been developed by the MATISSE consortium. The MATISSE instrument is the mid-infrared new generation interferometric instrument of the Very Large Telescope Interferometer (VLTI). It is a 2-in-1 instrument with 2 cryostats and 2 detectors: one 2k x 2k Rockwell Hawaii 2RG detector for L&M-bands, and one 1k x 1k Raytheon Aquarius detector for N-band, both read at high framerates, up to 30 frames per second. MATISSE is undergoing its first tests in laboratory today.
We introduce a data reduction package written in Interactive Data Language (IDL) for the Magellan Echellete Spectrograph (MAGE). MAGE is a medium-resolution (R ~4100), cross-dispersed, optical spectrograph, with coverage from ~3000-10000 Angstroms. The MAGE Spectral Extractor (MASE) incorporates the entire image reduction and calibration process, including bias subtraction, flat fielding, wavelength calibration, sky subtraction, object extraction and flux calibration of point sources. We include examples of the user interface and reduced spectra. We show that the wavelength calibration is sufficient to achieve ~5 km/s RMS accuracy and relative flux calibrations better than 10%. A light-weight version of the full reduction pipeline has been included for real-time source extraction and signal-to-noise estimation at the telescope.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا