Do you want to publish a course? Click here

Nanoscale roughness and morphology affect the IsoElectric Point of titania surfaces

224   0   0.0 ( 0 )
 Added by Alessandro Podesta'
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the systematic investigation of the role of surface nanoscale roughness and morphology on the charging behaviour of nanostructured titania (TiO2) surfaces in aqueous solutions. IsoElectric Points (IEPs) of surfaces have been characterized by direct measurement of the electrostatic double layer interactions between titania surfaces and the micrometer-sized spherical silica probe of an atomic force microscope in NaCl aqueous electrolyte. The use of a colloidal probe provides well-defined interaction geometry and allows effectively probing the overall effect of nanoscale morphology. By using supersonic cluster beam deposition to fabricate nanostructured titania films, we achieved a quantitative control over the surface morphological parameters. We performed a systematical exploration of the electrical double layer properties in different interaction regimes characterized by different ratios of characteristic nanometric lengths of the system: the surface rms roughness Rq, the correlation length {xi} and the Debye length {lambda}D. We observed a remarkable reduction by several pH units of IEP on rough nanostructured surfaces, with respect to flat crystalline rutile TiO2. In order to explain the observed behavior of IEP, we consider the roughness-induced self-overlap of the electrical double layers as a potential source of deviation from the trend expected for flat surfaces.



rate research

Read More

62 - Andrea Parisi 2000
We study the fracture surface of three dimensional samples through a model for quasi-static fractures known as Born Model. We find for the roughness exponent a value of 0.5 expected for ``small length scales in microfracturing experiments. Our simulations confirm that at small length scales the fracture can be considered as quasi-static. The isotropy of the roughness exponent on the crack surface is also shown. Finally, considering the crack front, we compute the roughness exponents for longitudinal and transverse fluctuations of the crack line (both 0.5). They result in agreement with experimental data, and supports the possible application of the model of line depinning in the case of long-range interactions.
The Casimir-Polder force is an important long range interaction involved in adsorption and desorption of molecules in fluids. We explore Casimir-Polder interactions between methane molecules in water, and between a molecule in water near SiO2 and hexane surfaces. Inclusion of the finite molecular size in the expression for the Casimir-Polder energy leads to estimates of the dispersion contribution to the binding energies between molecules and between one molecule and a planar surface.
We study the interaction energy between two surfaces, one of them flat, the other describable as the composition of a small-amplitude corrugation and a slightly curved, smooth surface. The corrugation, represented by a spatially random variable, involves Fourier wavelengths shorter than the (local) curvature radii of the smooth component of the surface. After averaging the interaction energy over the corrugation distribution, we obtain an expression which only depends on the smooth component. We then approximate that functional by means of a derivative expansion, calculating explicitly the leading and next-to-leading order terms in that approximation scheme. We analyze the resulting interplay between shape and roughness corrections for some specific corrugation models in the cases of electrostatic and Casimir interactions.
Fouling is a major obstacle and challenge in membrane-based separation processes. Caused by the sophisticated interactions between foulant and membrane surface, fouling strongly depends on membrane surface chemistry and morphology. Current studies in the field have been largely focused on polymer membranes. Herein, we report a molecular simulation study for fouling on alumina and graphene membrane surfaces during water treatment. For two foulants (sucralose and bisphenol A), the fouling on alumina surfaces is reduced with increasing surface roughness; however, the fouling on graphene surfaces is enhanced by roughness. It is unravelled that the foulant-surface interaction becomes weaker in the ridge region of a rough alumina surface, thus allowing foulant to leave the surface and reducing fouling. Such behavior is not observed on a rough graphene surface because of the strong foulant-graphene interaction. Moreover, with increasing roughness, the hydrogen bonds formed between water and alumina surfaces are found to increase in number as well as stability. By scaling the atomic charges of alumina, fouling behavior on alumina surfaces is shifted to the one on graphene surfaces. This simulation study reveals that surface chemistry and roughness play a crucial role in membrane fouling, and the microscopic insights are useful for the design of new membranes towards high-performance water treatment.
Using the measured optical response and surface roughness topography as inputs, we perform realistic calculations of the combined effect of Casimir and electrostatic forces on the actuation dynamics of micro-electromechanical systems (MEMS). In contrast with the expectations, roughness can influence MEMS dynamics even at distances between bodies significantly larger than the root-mean-square roughness. This effect is associated with statistically rare high asperities that can be locally close to the point of contact. It is found that, even though surface roughness appears to have a detrimental effect on the availability of stable equilibria, it ensures that those equilibria can be reached more easily than in the case of flat surfaces. Hence our findings play a principal role for the stability of microdevices such as vibration sensors, switches, and other related MEM architectures operating at distances below 100 nm.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا