Do you want to publish a course? Click here

Quantum Simulations of Relativistic Quantum Physics in Circuit QED

164   0   0.0 ( 0 )
 Added by Julen Pedernales
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a scheme for simulating relativistic quantum physics in circuit quantum electrodynamics. By using three classical microwave drives, we show that a superconducting qubit strongly-coupled to a resonator field mode can be used to simulate the dynamics of the Dirac equation and Klein paradox in all regimes. Using the same setup we also propose the implementation of the Foldy-Wouthuysen canonical transformation, after which the time derivative of the position operator becomes a constant of the motion.



rate research

Read More

Superconducting circuits are one of the leading quantum platforms for quantum technologies. With growing system complexity, it is of crucial importance to develop scalable circuit models that contain the minimum information required to predict the behaviour of the physical system. Based on microwave engineering methods, divergent and non-divergent Hamiltonian models in circuit quantum electrodynamics have been proposed to explain the dynamics of superconducting quantum networks coupled to infinite-dimensional systems, such as transmission lines and general impedance environments. Here, we study systematically common linear coupling configurations between networks and infinite-dimensional systems. The main result is that the simple Lagrangian models for these configurations present an intrinsic natural length that provides a natural ultraviolet cutoff. This length is due to the unavoidable dressing of the environment modes by the network. In this manner, the coupling parameters between their components correctly manifest their natural decoupling at high frequencies. Furthermore, we show the requirements to correctly separate infinite-dimensional coupled systems in local bases. We also compare our analytical results with other analytical and approximate methods available in the literature. Finally, we propose several applications of these general methods to analog quantum simulation of multi-spin-boson models in non-perturbative coupling regimes.
142 - G. Romero , E. Solano , 2016
Superconducting circuits have become a leading quantum technology for testing fundamentals of quantum mechanics and for the implementation of advanced quantum information protocols. In this chapter, we revise the basic concepts of circuit network theory and circuit quantum electrodynamics for the sake of digital and analog quantum simulations of quantum field theories, relativistic quantum mechanics, and many-body physics, involving fermions and bosons. Based on recent improvements in scalability, controllability, and measurement, superconducting circuits can be considered as a promising quantum platform for building scalable digital and analog quantum simulators, enjoying unique and distinctive properties when compared to other advanced platforms as trapped ions, quantum photonics and optical lattices.
Significant advances in coherence have made superconducting quantum circuits a viable platform for fault-tolerant quantum computing. To further extend capabilities, highly coherent quantum systems could act as quantum memories for these circuits. A useful quantum memory must be rapidly addressable by qubits, while maintaining superior coherence. We demonstrate a novel superconducting microwave cavity architecture that is highly robust against major sources of loss that are encountered in the engineering of circuit QED systems. The architecture allows for near-millisecond storage of quantum states in a resonator while strong coupling between the resonator and a transmon qubit enables control, encoding, and readout at MHz rates. The observed coherence times constitute an improvement of almost an order of magnitude over those of the best available superconducting qubits. Our design is an ideal platform for studying coherent quantum optics and marks an important step towards hardware-efficient quantum computing with Josephson junction-based quantum circuits.
Single electrons can be conceived as the simplest quantum nodes in a quantum network. Between electrons, single photons can act as quantum channels to exchange quantum information. Despite this appealing picture, in conventional materials, it is extremely difficult to make individual electrons and photons coherently interact with each other at the visible-infrared wavelengths suitable for long-distance communication. Here we theoretically demonstrate that the self-confined single-electron structure in condensed helium-4 can be a fascinating candidate for single-electron quantum nodes. Each electron in helium forms a bubble of 1 to 2 nm radius and coherently interacts with mid-infrared photons. A parametrically amplified femtosecond laser can drive the electrons into any superposition between the ground and excited states. An electron inside a slot-waveguide cavity can strongly couple with cavity photons and exhibits vacuum Rabi oscillations. Two electrons in the cavity naturally generate entanglement through their respective coupling to the lossy cavity. The electron-in-helium system offers unique insight in understanding nonequilibrium quantum dynamics.
We introduce the concept of embedding quantum simulators, a paradigm allowing the efficient quantum computation of a class of bipartite and multipartite entanglement monotones. It consists in the suitable encoding of a simulated quantum dynamics in the enlarged Hilbert space of an embedding quantum simulator. In this manner, entanglement monotones are conveniently mapped onto physical observables, overcoming the necessity of full tomography and reducing drastically the experimental requirements. Furthermore, this method is directly applicable to pure states and, assisted by classical algorithms, to the mixed-state case. Finally, we expect that the proposed embedding framework paves the way for a general theory of enhanced one-to-one quantum simulators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا