Do you want to publish a course? Click here

Quenched binary Bose-Einstein condensates: spin domain formation and coarsening

232   0   0.0 ( 0 )
 Added by Ryan Price
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore the time evolution of quasi-1D two component Bose-Einstein condensates (BECs) following a quench from one component BECs with a ${rm U}(1)$ order parameter into two component condensates with a ${rm U}(1)shorttimes{rm Z}_2$ order parameter. In our case, these two spin components have a propensity to phase separate, i.e., they are immiscible. Remarkably, these spin degrees of freedom can equivalently be described as a single component attractive BEC. A spatially uniform mixture of these spins is dynamically unstable, rapidly amplifing any quantum or pre-existing classical spin fluctuations. This coherent growth process drives the formation of numerous spin polarized domains, which are far from the systems ground state. At much longer times these domains grow in size, coarsening, as the system approaches equilibrium. The experimentally observed time evolution is fully consistent with our stochastic-projected Gross-Pitaevskii calculation.



rate research

Read More

181 - S.-W. Su , S.-C. Gou , Q. Sun 2016
We explore a new way of producing the Rashba spin-orbit coupling (SOC) for ultracold atoms by using a two-component (spinor) atomic Bose-Einstein condensate (BEC) confined in a bilayer geometry. The SOC of the Rashba type is created if the atoms pick up a {pi} phase after completing a cyclic transition between four combined spin-layer states composed of two spin and two layer states. The cyclic coupling of the spin-layer states is carried out by combining an intralayer Raman coupling and an interlayer laser assisted tunneling. We theoretically determine the ground-state phases of the spin-orbit-coupled BEC for various strengths of the atom-atom interaction and the laser-assisted coupling. It is shown that the bilayer scheme provides a diverse ground-state phase diagram. In an intermediate range of the atom-light coupling two interlacing lattices of half- skyrmions and half-antiskyrmions are spontaneously created. In the strong-coupling regime, where the SOC of the Rashba-type is formed, the ground state represents plane-wave or standing-wave phases depending on the interaction between the atoms. A variational analysis is shown to be in a good agreement with the numerical results.
The problem of understanding how a coherent, macroscopic Bose-Einstein condensate (BEC) emerges from the cooling of a thermal Bose gas has attracted significant theoretical and experimental interest over several decades. The pioneering achievement of BEC in weakly-interacting dilute atomic gases in 1995 was followed by a number of experimental studies examining the growth of the BEC number, as well as the development of its coherence. More recently there has been interest in connecting such experiments to universal aspects of nonequilibrium phase transitions, in terms of both static and dynamical critical exponents. Here, the spontaneous formation of topological structures such as vortices and solitons in quenched cold-atom experiments has enabled the verification of the Kibble-Zurek mechanism predicting the density of topological defects in continuous phase transitions, first proposed in the context of the evolution of the early universe. This chapter reviews progress in the understanding of BEC formation, and discusses open questions and future research directions in the dynamics of phase transitions in quantum gases.
Extending the understanding of Bose-Einstein condensate (BEC) physics to new geometries and topologies has a long and varied history in ultracold atomic physics. One such new geometry is that of a bubble, where a condensate would be confined to the surface of an ellipsoidal shell. Study of this geometry would give insight into new collective modes, self-interference effects, topology-dependent vortex behavior, dimensionality crossovers from thick to thin shells, and the properties of condensates pushed into the ultradilute limit. Here we discuss a proposal to implement a realistic experimental framework for generating shell-geometry BEC using radiofrequency dressing of magnetically-trapped samples. Such a tantalizing state of matter is inaccessible terrestrially due to the distorting effect of gravity on experimentally-feasible shell potentials. The debut of an orbital BEC machine (NASA Cold Atom Laboratory, aboard the International Space Station) has enabled the operation of quantum-gas experiments in a regime of perpetual freefall, and thus has permitted the planning of microgravity shell-geometry BEC experiments. We discuss specific experimental configurations, applicable inhomogeneities and other experimental challenges, and outline potential experiments.
We have computed phase diagrams for rotating spin-1 Bose-Einstein condensates with long-range magnetic dipole-dipole interactions. Spin textures including vortex sheets, staggered half-quantum- and skyrmion vortex lattices and higher order topological defects have been found. These systems exhibit both superfluidity and magnetic crystalline ordering and they could be realized experimentally by imparting angular momentum in the condensate.
Weak measurement in tandem with real-time feedback control is a new route toward engineering novel non-equilibrium quantum matter. Here we develop a theoretical toolbox for quantum feedback control of multicomponent Bose-Einstein condensates (BECs) using backaction-limited weak measurements in conjunction with spatially resolved feedback. Feedback in the form of a single-particle potential can introduce effective interactions that enter into the stochastic equation governing system dynamics. The effective interactions are tunable and can be made analogous to Feshbach resonances -- spin-independent and spin-dependent -- but without changing atomic scattering parameters. Feedback cooling prevents runaway heating due to measurement backaction and we present an analytical model to explain its effectiveness. We showcase our toolbox by studying a two-component BEC using a stochastic mean-field theory, where feedback induces a phase transition between easy-axis ferromagnet and spin-disordered paramagnet phases. We present the steady-state phase diagram as a function of intrinsic and effective spin-dependent interaction strengths. Our result demonstrates that closed-loop quantum control of Bose-Einstein condensates is a powerful new tool for quantum engineering in cold-atom systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا