Do you want to publish a course? Click here

Automated rapid follow-up of Swift GRBs with AMI-LA

122   0   0.0 ( 0 )
 Added by Tim Staley
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present 15-GHz follow-up radio observations of eleven Swift gamma-ray burst (GRB) sources, obtained with the Arcminute Microkelvin Imager Large Array (AMI-LA). The initial follow-up observation for each source was made in a fully automated fashion; as a result four observations were initiated within five minutes of the GRB alert timestamp. These observations provide the first millijansky-level constraints on prolonged radio emission from GRBs within the first hour post-burst. While no radio emission within the first six hours after the GRB is detected in this preliminary analysis, radio afterglow is detected from one of the GRBs (GRB120326A) on a timescale of days. The observations were made as part of an ongoing programme to use AMI-LA as a systematic follow-up tool for transients at radio frequencies. In addition to the preliminary results, we explain how we have created an easily extensible automated follow-up system, describing new software tools developed for astronomical transient alert distribution, automatic requesting of target-of-opportunity observations, and robotic control of the observatory.



rate research

Read More

Gravitational Wave (GW) events are physical processes that significantly perturbate space-time, e.g. compact binary coalescenses, causing the production of GWs. The detection of GWs by a worldwide network of advanced interferometers offer unique opportunities for multi-messenger searches and electromagnetic counterpart associations. While carrying extremely useful information, searches for associated electromagnetic emission are challenging due to large sky localisation uncertainties provided by the current GW observatories LIGO and Virgo. Here we present the methods and procedures used within the High Energy Stereoscopic System (H.E.S.S.) in searches for very-high-energy (VHE) gamma-ray emission associated to the emission of GWs from extreme events. To do so we create several algorithms dedicated to schedule GW follow-up observations by creating optimized pointing paterns. We describe algorithms using 2-dimensional GW localisation information and algorithms correlating the galaxy distribution in the local universe, by using galaxy catalogs, with the 3-dimensional GW localisation information and evaluate their performances. The H.E.S.S. automatic GW follow-up chain, described in this paper, is optimized to initiate GW follow-up observations within less than 1 minute after the alert reception. These developements allowed H.E.S.S. observations of 6 GW events out of the 67 non-retracted GW events detected during the first three observation runs of LIGO and Virgo reaching VHE $gamma$-ray coverages of up to 70% of the GW localisation.
160 - Taylor Aune 2011
In many theoretical models of gamma-ray bursts (GRBs) and their afterglows, the emission of photons above 100 GeV is predicted. The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope has detected delayed, high-energy emission (up to 90 GeV in the burst rest-frame) from several GRBs and no evidence of a high-energy spectral cutoff during the early afterglow phase of the burst has been found. Presented here are the results of follow-up observations with VERITAS, a ground-based telescope array sensitive to gamma-rays above 100 GeV, of GRBs detected by the Fermi and Swift satellites. These observations have not yielded a conclusive detection and the upper limits on very high energy (VHE, E>100 GeV) gamma-ray flux obtained from these observations are among the most constraining to date.
The Advanced LIGO observatory recently reported the first direct detection of gravitational waves (GW) which triggered ALIGO on 2015 September 14. We report on observations taken with the Swift satellite two days after the trigger. No new X-ray, optical, UV or hard X-ray sources were detected in our observations, which were focussed on nearby galaxies in the GW error region and covered 4.7 square degrees (~2% of the probability in the rapidly-available GW error region; 0.3% of the probability from the final GW error region, which was produced several months after the trigger). We describe the rapid Swift response and automated analysis of the X-ray telescope and UV/Optical Telescope data, and note the importance to electromagnetic follow up of early notification of the progenitor details inferred from GW analysis.
During its first observing run, in late 2015, the advanced LIGO facility announced 3 gravitational wave (GW) triggers to electromagnetic follow-up partners. Two of these have since been confirmed as being of astrophysical origin: both are binary black hole mergers at ~500 Mpc; the other trigger was later found not to be astrophysical. In this paper we report on the Swift follow up observations of the second and third triggers, including details of 21 X-ray sources detected; none of which can be associated with the GW event. We also consider the challenges that the next GW observing run will bring as the sensitivity and hence typical distance of GW events will increase. We discuss how to effectively use galaxy catalogues to prioritise areas for follow up, especially in the presence of distance estimates from the GW data. We also consider two galaxy catalogues and suggest that the high completeness at larger distances of the 2MASS Photometric Redshift Catalogue (2MPZ) makes it very well suited to optimise Swift follow-up observations.
272 - R. Landi , L. Bassani , A. Malizia 2010
Many sources listed in the 4th IBIS/ISGRI survey are still unidentified, i.e. lacking an X-ray counterpart or simply not studied at lower energies (< 10 keV). The cross-correlation between the list of IBIS sources in the 4th catalogue and the Swift/XRT data archive is of key importance to search for the X-ray counterparts; in fact, the positional accuracy of few arcseconds obtained with XRT allows us to perform more efficient and reliable follow-up observations at other wavelengths (optical, UV, radio). In this work, we present the results of the XRT observations for four new gamma-ray sources: IGR J12123-5802, IGR J1248.2-5828, IGR J13107-5626 and IGR J14080-3023. For IGR J12123-5802 we find a likely counterpart, but further information are needed to classified this object, IGR J1248.2-5828 is found to be a Seyfert 1.9, for IGR J13107-5626 we suggest a possible AGN nature, while IGR J14080-3023 is classified as a Seyfert 1.5 galaxy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا