No Arabic abstract
In the framework of the Magnetism in Massive Stars (MiMeS) project, a HARPSpol Large Program at the 3.6m-ESO telescope has recently started to collect high-resolution spectropolarimetric data of a large number of Southern massive OB stars in the field of the Galaxy and in many young clusters and associations. In this contribution, we present details of the HARPSpol survey, the first HARPSpol discoveries of magnetic fields in massive stars, and the magnetic properties of two previously known magnetic stars.
The MiMeS project is a large-scale, high resolution, sensitive spectropolarimetric investigation of the magnetic properties of O and early B type stars. Initiated in 2008 and completed in 2013, the project was supported by 3 Large Program allocations, as well as various programs initiated by independent PIs and archival resources. Ultimately, over 4800 circularly polarized spectra of 560 O and B stars were collected with the instruments ESPaDOnS at the Canada-France-Hawaii Telescope, Narval at the Telescope Bernard Lyot, and HARPSpol at the European Southern Observatory La Silla 3.6m telescope, making MiMeS by far the largest systematic investigation of massive star magnetism ever undertaken. In this paper, the first in a series reporting the general results of the survey, we introduce the scientific motivation and goals, describe the sample of targets, review the instrumentation and observational techniques used, explain the exposure time calculation designed to provide sensitivity to surface dipole fields above approximately 100 G, discuss the polarimetric performance, stability and uncertainty of the instrumentation, and summarize the previous and forthcoming publications.
We present the analysis performed on spectropolarimetric data of 97 O-type targets included in the framework of the MiMeS (Magnetism in Massive Stars) Survey. Mean Least-Squares Deconvolved Stokes I and V line profiles were extracted for each observation, from which we measured the radial velocity, rotational and non-rotational broadening velocities, and longitudinal magnetic field. The investigation of the Stokes I profiles led to the discovery of 2 new multi-line spectroscopic systems (HD46106, HD204827) and confirmed the presence of a suspected companion in HD37041. We present a modified strategy of the Least-Squares Deconvolution technique aimed at optimising the detection of magnetic signatures while minimising the detection of spurious signatures in Stokes V. Using this analysis, we confirm the detection of a magnetic field in 6 targets previously reported as magnetic by the MiMeS collaboration (HD108, HD47129A2, HD57682, HD148937, CPD-28 2561, and NGC 1624-2), as well as report the presence of signal in Stokes V in 3 new magnetic candidates (HD36486, HD162978, HD199579). Overall, we find a magnetic incidence rate of 7+/-3%, for 108 individual O stars (including all O-type components part of multi-line systems), with a median uncertainty of the longitudinal field measurements of about 50,G. An inspection of the data reveals no obvious biases affecting the incidence rate or the preference for detecting magnetic signatures in the magnetic stars. Similar to A- and B-type stars, we find no link between the stars physical properties (e.g. Teff, mass, age) and the presence of a magnetic field. However, the Of?p stars represent a distinct class of magnetic O-type stars.
The evolution of massive stars is still partly unconstrained. Mass, metallicity, mass loss and rotation are the main drivers of stellar evolution. Binarity and magnetic field may also significantly affect the fate of massive stars. Our goal is to investigate the evolution of single O stars in the Galaxy. For that, we use a sample of 74 objects comprising all luminosity classes and spectral types from O4 to O9.7. We rely on optical spectroscopy obtained in the context of the MiMeS survey of massive stars. We perform spectral modelling with the code CMFGEN. We determine the surface properties of the sample stars, with special emphasis on abundances of carbon, nitrogen and oxygen. Most of our sample stars have initial masses in the range 20 to 50 Msun. We show that nitrogen is more enriched and carbon/oxygen more depleted in supergiants than in dwarfs, with giants showing intermediate degrees of mixing. CNO abundances are observed in the range of values predicted by nucleosynthesis through the CNO cycle. More massive stars, within a given luminosity class, appear to be more chemically enriched than lower mass stars. We compare our results with predictions of three types of evolutionary models and show that, for two sets of models, 80% of our sample can be explained by stellar evolution including rotation. The effect of magnetism on surface abundances is unconstrained. Our study indicates that, in the 20-50 Msun mass range, the surface chemical abundances of most single O stars in the Galaxy are fairly well accounted for by stellar evolution of rotating stars.
The Magnetism in Massive Stars (MiMeS) project represents the largest systematic survey of stellar magnetism ever undertaken. Based on a sample of over 550 Galactic B and O-type stars, the MiMeS project has derived the basic characteristics of magnetism in hot, massive stars. Herein we report preliminary results.
We have initiated a survey aimed at locating a nearly complete sample of classical symbiotic stars (SySt) in the Magellanic Clouds. Such a sample is nearly impossible to obtain in the Milky Way, and is essential to constrain the formation, evolution and demise of these strongly interacting, evolved binary stars. We have imaged both Clouds in Halpha and He II 4686 narrow-band filters deeply enough to detect all known symbiotic stars. While He II 4686 is not present in all SySt, our method should yield a high success rate because the mimics of SySt are not as likely as true symbiotics to show this emission line. We demonstrate the viability of our method through the discovery and characterization of three new SySt in the Small Magellanic Cloud: 2MASS J00411657-7233253, 2MASS J01104404-7208464 and 2MASS J01113745-7159023. Enigmatic variability was observed in 2MASS J01113745-7159023, where changes in the amplitude of its quasi-periodic variability may suggest an enhanced mass transfer rate during a periastron passage on an elliptical orbit. 2MASS J01104404-7208464 is an ellipsoidal variable with an orbital period of 403d.