Backreaction: Gauge and Frame Dependences


Abstract in English

The cosmological backreaction from perturbations is clearly gauge-dependent, and obviously depends on the choice of averaged Hubble rate. We consider two common choices of Hubble rate and advocate the use of comoving volume-preserving gauges. We highlight two examples valid to an appropriate order in perturbation theory, uniform curvature gauge, which is as close to volume-preserving as possible, and a spatially-traceless uniform cold dark matter gauge which preserves the volume to linear order. We demonstrate the strong gauge- and frame-dependences in averaging. In traceless uniform CDM gauge the backreaction exhibits a strong ultra-violet divergence and can be tuned to an arbitrary magnitude with an appropriate choice of smoothing scale. In uniform curvature gauge we find that for a choice of Hubble rate locked to the spatial surface the backreaction vanishes identically, while for a Hubble rate defined from a fluids expansion scalar the effective energy density at the current epoch in an Einstein-de Sitter universe is Omega_eff~5e-4, slightly bigger than but in broad agreement with previous results in conformal Newtonian gauge.

Download