Do you want to publish a course? Click here

A New Grid of Synthetic Spectra for the Analysis of [WC]-type Central Stars of Planetary Nebulae

114   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a comprehensive grid of synthetic stellar-atmosphere spectra, suitable for the analysis of high resolution spectra of hydrogen-deficient post-Asymptotic Giant Branch (post-AGB) objects hotter than 50000 K, migrating along the constant luminosity branch of the Hertzsprung-Russell diagram (HRD). The grid was calculated with CMFGEN, a state-of-the-art stellar atmosphere code that properly treats the stellar winds, accounting for expanding atmospheres in non-LTE, line blanketing, soft X-rays, and wind clumping. We include many ionic species that have been previously neglected. Our uniform set of models fills a niche in an important parameter regime, i.e., high effective temperatures, high surface gravities, and a range of mass-loss values. The grid constitutes a general tool to facilitate determination of the stellar parameters and line identifications and to interpret morphological changes of the stellar spectrum as stars evolve through the central star of planetary nebula (CSPN) phase. We show the effect of major physical parameters on spectral lines in the far-UV, UV, and optical regimes. We analyse UV and far-UV spectra of the central star of NGC 6905 using the grid to constrain its physical parameters, and proceed to further explore other parameters not taken in consideration in the grid. This application shows that the grid can be used to constrain the main photospheric and wind parameters, as a first step towards a detailed analysis. The full grid of synthetic spectra, comprising far-UV, UV, optical, and IR spectral regions, is available on-line.



rate research

Read More

Context. There are more than 3000 confirmed and probable known Galactic planetary nebulae, but central star spectroscopic information is available for only 13% of them. Aims. We undertook a spectroscopic survey of central stars of PNe to identify their spectral types. Methods. We performed spectroscopic observations, at low resolution, with the 2-m telescope at CASLEO, Argentina. Results. We present the spectra of 46 central stars of PNe, most of them are OB-type and emission-line stars.
While most of the low-mass stars stay hydrogen-rich on their surface throughout their evolution, a considerable fraction of white dwarfs as well as central stars of planetary nebulae have a hydrogen-deficient surface composition. The majority of these H-deficient central stars exhibit spectra very similar to massive Wolf-Rayet stars of the carbon sequence, i.e. with broad emission lines of carbon, helium, and oxygen. In analogy to the massive Wolf-Rayet stars, they are classified as [WC] stars. Their formation, which is relatively well understood, is thought to be the result of a (very) late thermal pulse of the helium burning shell. It is therefore surprising that some H-deficient central stars which have been found recently, e.g. IC 4663 and Abell 48, exhibit spectra that resemble those of the massive Wolf-Rayet stars of the nitrogen sequence, i.e. with strong emission lines of nitrogen instead of carbon. This new type of central stars is therefore labelled [WN]. We present spectral analyses of these objects and discuss the status of further candidates as well as the evolutionary status and origin of the [WN] stars.
The post-asymptotic giant branch (AGB) phase is arguably one of the least understood phases of the evolution of low- and intermediate- mass stars. The recent post-AGB evolutionary sequences computed by Miller Bertolami (2016) are at least three to ten times faster than those previously published by Vassiliadis & Wood (1994) and Bloecker (1995) which have been used in a large number of studies. This is true for the whole mass and metallicity range. The new models are also $sim$0.1-0.3 dex brighter than the previous models with similar remnant masses. In this short article we comment on the main reasons behind these differences, and discuss possible implications for other studies of post-AGB stars or planetary nebulae.
We have obtained multi-wavelength observations of compact Galactic planetary nebulae (PNe) to probe post-Asymptotic Giant Branch (AGB) evolution from the onset of nebular ejection. We analyze new observations from HST to derive the masses and evolutionary status of their central stars (CSs) in order to better understand the relationship between the CS properties and those of the surrounding nebulae. We also compare this sample with others we obtained using the same technique in different metallicity environments: the Large and Small Magellanic Clouds. We work with HST/WFC3 images of 51 targets obtained in a snapshot survey (GO-11657). The high spatial resolution of HST allows us to resolve these compact PNe and distinguish the CS emission from that of their surrounding PNe. The targets were imaged through the filters F200LP, F350LP, and F814W from which we derive Johnson V and I magnitudes. We derive CS bolometric luminosities and effective temperatures using the Zanstra technique, from a combination of HST photometry and ground-based spectroscopic data. We present new unique photometric measurements of 50 CSs, and derived effective temperatures and luminosities for most of them. Central star masses for 23 targets were derived by placing the stars on a temperature-luminosity diagram and compare their location with the best available single star post-AGB evolutionary tracks, the remaining masses were indeterminate most likely because of underestimates of the stellar temperature, or because of substantial errors in the adopted statistical distances to these objects. The distribution of CS masses in the sample of compact PNe is different than sample in the LMC and SMC, but with a median mass of 0.59 solar masses it is similar to other Galactic samples. We conclude that the compact nature of many of the PNe is a result of their large distance, rather than their physical dimension.
The evolution of central stars of planetary nebulae was so far documented in just a few cases. However, spectra collected a few decades ago may provide a good reference for studying the evolution of central stars using the emission line fluxes of their nebulae. We investigated evolutionary changes of the [OIII] 5007 A line flux in the spectra of planetary nebulae. We compared nebular fluxes collected during a decade or longer. We used literature data and newly obtained spectra. A grid of Cloudy models was computed using existing evolutionary models, and the models were compared with the observations. An increase of the [OIII] 5007 A line flux is frequently observed in young planetary nebulae hosting H-rich central stars. The increasing nebular excitation is the response to the increasing temperature and hardening radiation of the central stars. We did not observe any changes in the nebular fluxes in the planetary nebulae hosting late-type Wolf-Rayet (WR) central stars. This may indicate a slower temperature evolution (which may stem from a different evolutionary status) of late-[WR] stars. In young planetary nebulae with H-rich central stars, the evolution can be followed using optical spectra collected during a decade or longer. The observed evolution of H-rich central stars is consistent with the predictions of the evolutionary models provided in the literature. Late-[WR] stars possibly follow a different evolutionary path.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا