Do you want to publish a course? Click here

Geometric-phase interference in a Mn_{12} single-molecule magnet with four-fold rotational symmetry

201   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the magnetic relaxation rate Gamma of the single-molecule magnet Mn_{12}-tBuAc as a function of magnetic field component H_T transverse to the molecules easy axis. When the spin is near a magnetic quantum tunneling resonance, we find that Gamma increases abruptly at certain values of H_T. These increases are observed just beyond values of H_T at which a geometric-phase interference effect suppresses tunneling between two excited energy levels. The effect is washed out by rotating H_T away from the spins hard axis, thereby suppressing the interference effect. Detailed numerical calculations of Gamma using the known spin Hamiltonian accurately reproduce the observed behavior. These results are the first experimental evidence for geometric-phase interference in a single-molecule magnet with true four-fold symmetry.



rate research

Read More

166 - H. M. Quddusi , J. Liu , S. Singh 2011
A Mn4 single-molecule magnet displays asymmetric Berry-phase interference patterns in the transverse-field (HT) dependence of the magnetization tunneling probability when a longitudinal field (HL) is present, contrary to symmetric patterns observed for HL=0. Reversal of HL results in a reflection of the transverse-field asymmetry about HT=0, as expected on the basis of the time-reversal invariance of the spin-orbit Hamiltonian which is responsible for the tunneling oscillations. A fascinating motion of Berry-phase minima within the transverse-field magnitude-direction phase space results from a competition between noncollinear magnetoanisotropy tensors at the two distinct Mn sites.
Magnetization measurements of a molecular clusters Mn12 with a spin ground state of S = 10 show resonance tunneling at avoided energy level crossings. The observed oscillations of the tunnel probability as a function of the magnetic field applied along the hard anisotropy axis are due to topological quantum phase interference of two tunnel paths of opposite windings. Mn12 is therefore the second molecular clusters presenting quantum phase interference.
Berry phase effects in spin systems lead to the suppression of tunneling effects when different tunneling paths interfere destructively. Such effects have been seen in several single-molecule magnets (SMMs) through measurements of magnetization dynamics, where the experimental signal may arise from the contributions of numerous energy levels. Here we present experimental measurements of Berry phase interference effects that are determined through electron-spin resonance on a four-fold symmetric SMM. Specifically, we measure transitions between tunnel-split excited states in the Ni$_4$ SMM in the presence of a transverse field in the hard plane of the crystalline sample. By using a home-built rotation apparatus, the direction of the sample can be changed textit{in situ} so that that the field direction can be swept through the entire hard plane of the sample. When the field is in certain directions in the plane, we observe a splitting of the transition, a hallmark of Berry phase interference. The experimental results are well reproduced by theoretical predictions, and fitting of the data provides information about the effects of dipolar interactions and sample misalignment.
We show that the nuclear spin dynamics in the single-molecule magnet Mn12-ac below 1 K is governed by quantum tunneling fluctuations of the cluster spins, combined with intercluster nuclear spin diffusion. We also obtain the first experimental proof that - surprisingly - even deep in the quantum regime the nuclear spins remain in good thermal contact with the lattice phonons. We propose a simple model for how T-independent tunneling fluctuations can relax the nuclear polarization to the lattice, that may serve as a framework for more sophisticated theories.
W-band ({ u} ca. 94 GHz) electron paramagnetic resonance (EPR) spectroscopy was used for a single-crystal study of a star-shaped Fe3Cr single-molecule magnet (SMM) with crystallographically imposed trigonal symmetry. The high resolution and sensitivity accessible with W-band EPR allowed us to determine accurately the axial zero-field splitting terms for the ground (S =6) and first two excited states (S =5 and S =4). Furthermore, spectra recorded by applying the magnetic field perpendicular to the trigonal axis showed a pi/6 angular modulation. This behavior is a signature of the presence of trigonal transverse magnetic anisotropy terms whose values had not been spectroscopically determined in any SMM prior to this work. Such in-plane anisotropy could only be justified by dropping the so-called giant spin approach and by considering a complete multispin approach. From a detailed analysis of experimental data with the two models, it emerged that the observed trigonal anisotropy directly reflects the structural features of the cluster, i.e., the relative orientation of single-ion anisotropy tensors and the angular modulation of single-ion anisotropy components in the hard plane of the cluster. Finally, since high-order transverse anisotropy is pivotal in determining the spin dynamics in the quantum tunneling regime, we have compared the angular dependence of the tunnel splitting predicted by the two models upon application of a transverse field (Berry-phase interference).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا