Do you want to publish a course? Click here

Persistent currents in spinor condensates

146   0   0.0 ( 0 )
 Added by Zoran Hadzibabic
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We create and study persistent currents in a toroidal two-component Bose gas, consisting of $^{87}$Rb atoms in two different spin states. For a large spin-population imbalance we observe supercurrents persisting for over two minutes. However we find that the supercurrent is unstable for spin polarisation below a well defined critical value. We also investigate the role of phase coherence between the two spin components and show that only the magnitude of the spin-polarisation vector, rather than its orientation in spin space, is relevant for supercurrent stability.



rate research

Read More

We study conditions under which vortices in a highly oblate harmonically trapped Bose-Einstein condensate (BEC) can be stabilized due to pinning by a blue-detuned Gaussian laser beam, with particular emphasis on the potentially destabilizing effects of laser beam positioning within the BEC. Our approach involves theoretical and numerical exploration of dynamically and energetically stable pinning of vortices with winding number up to $S=6$, in correspondence with experimental observations. Stable pinning is quantified theoretically via Bogoliubov-de Gennes excitation spectrum computations and confirmed via direct numerical simulations for a range of conditions similar to those of experimental observations. The theoretical and numerical results indicate that the pinned winding number, or equivalently the winding number of the superfluid current about the laser beam, decays as a laser beam of fixed intensity moves away from the BEC center. Our theoretical analysis helps explain previous experimental observations, and helps define limits of stable vortex pinning for future experiments involving vortex manipulation by laser beams.
121 - Marta Abad 2015
We study the stability of persistent currents in a coherently coupled quasi-2D Bose-Einstein condensate confined in a ring trap at T=0. By numerically solving Gross-Pitaevskii equations and by analyzing the excitation spectrum obtained from diagonalization of the Bogoliubov-de Gennes matrix, we describe the mechanisms responsible for the decay of the persistent currents depending on the values of the interaction coupling constants and the Rabi frequency. When the unpolarized system decays due to an energetic instability in the density channel, the spectrum may develop a roton-like minimum, which gives rise to the finite wavelength excitation necessary for vortex nucleation at the inner surface. When decay in the unpolarized system is driven by spin-density excitations, the finite wavelength naturally arises from the existence of a gap in the excitation spectrum. In the polarized phase of the coherently coupled condensate, there is an hybridization of the excitation modes that leads to complex decay dynamics. In particular, close to the phase transition, a state of broken rotational symmetry is found to be stationary and stable.
Large spin systems can exhibit unconventional types of magnetic ordering different from the ferromagnetic or Neel-like antiferromagnetic order commonly found in spin 1/2 systems. Spin-nematic phases, for instance, do not break time-reversal invariance and their magnetic order parameter is characterized by a second rank tensor with the symmetry of an ellipsoid. Here we show direct experimental evidence for spin-nematic ordering in a spin-1 Bose-Einstein condensate of sodium atoms with antiferromagnetic interactions. In a mean field description this order is enforced by locking the relative phase between spin components. We reveal this mechanism by studying the spin noise after a spin rotation, which is shown to contain information hidden when looking only at averages. The method should be applicable to high spin systems in order to reveal complex magnetic phases.
Dynamical fermionization refers to the phenomenon in Tonks-Girardeau (TG) gases where, upon release from harmonic confinement, the gass momentum density profile evolves asymptotically to that of an ideal Fermi gas in the initial trap. This phenomenon has been demonstrated theoretically in hardcore and anyonic TG gases, and recently experimentally observed in a strongly interacting Bose gas. We extend this study to a one dimensional (1D) spinor gas of arbitrary spin in the strongly interacting regime, and analytically prove that the total momentum distribution after the harmonic trap is turned off approaches that of a spinless ideal Fermi gas, while the asymptotic momentum distribution of each spin component takes the same shape of the initial real space density profile of that spin component. Our work demonstrates the rich physics arising from the interplay between the spin and the charge degrees of freedom in a spinor system.
75 - Xiao-Lu Yu , Boyang Liu 2021
We investigate the polarons formed by immersing a spinor impurity in a ferromagnetic state of $F=1$ spinor Bose-Einstein condensate. The ground state energies and effective masses of the polarons are calculated in both weak-coupling regime and strong-coupling regime. In the weakly interacting regime the second order perturbation theory is performed. In the strong coupling regime we use a simple variational treatment. The analytical approximations to the energy and effective mass of the polarons are constructed. Especially, a transition from the mobile state to the self-trapping state of the polaron in the strong coupling regime is discussed. We also estimate the signatures of polaron effects in spinor BEC for the future experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا