Time-optimal quantum computation


Abstract in English

Given any quantum error correcting code permitting universal fault-tolerant quantum computation and transversal measurement of logical X and Z, we describe how to perform time-optimal quantum computation, meaning the execution of an arbitrary Clifford circuit followed by a layer of independent T gates and any necessary feedforward measurement determined corrective S gates all in the time of a single physical measurement. We assume fast classical processing and classical communication, and argue the reasonableness of this assumption. This enables fault-tolerant quantum computation to be performed orders of magnitude faster than previously thought possible, with the execution time independent of the error correction strength.

Download