Do you want to publish a course? Click here

The host galaxy of the super-luminous SN 2010gx and limits on explosive nickel-56 production

198   0   0.0 ( 0 )
 Added by Ting-Wan Chen
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Super-luminous supernovae have a tendency to occur in faint host galaxies which are likely to have low mass and low metallicity. While these extremely luminous explosions have been observed from z=0.1 to 1.55, the closest explosions allow more detailed investigations of their host galaxies. We present a detailed analysis of the host galaxy of SN 2010gx (z=0.23), one of the best studied super-luminous type Ic supernovae. The host is a dwarf galaxy (M_g=-17.42+/-0.17) with a high specific star formation rate. It has a remarkably low metallicity of 12+log(O/H)=7.5+/-0.1 dex as determined from the detection of the [OIII] 4363 Angs line. This is the first reliable metallicity determination of a super-luminous stripped-envelope supernova host. We collected deep multi-epoch imaging with Gemini + GMOS between 240-560 days after explosion to search for any sign of radioactive nickel-56, which might provide further insights on the explosion mechanism and the progenitors nature. We reach griz magnitudes of m_AB~26, but do not detect SN 2010gx at these epochs. The limit implies that any nickel-56 production was similar to or below that of SN 1998bw (a luminous type Ic SN that produced around 0.4 M_sun of nickel-56). The low volumetric rates of these supernovae (~10^-4 of the core-collapse population) could be qualitatively matched if the explosion mechanism requires a combination of low-metallicity (below 0.2 Z_sun), high progenitor mass (>60 M_sun) and high rotation rate (fastest 10% of rotators).



rate research

Read More

Super-luminous supernovae of type Ic have a tendency to occur in faint host galaxies which are likely to have low mass and low metallicity. PTF12dam is one of the closest and best studied super-luminous explosions that has a broad and slowly fading lightcurve similar to SN 2007bi. Here we present new photometry and spectroscopy for PTF12dam from 200-500 days (rest-frame) after peak and a detailed analysis of the host galaxy (SDSS J142446.21+461348.6 at z = 0.107). Using deep templates and image subtraction we show that the full lightcurve can be fit with a magnetar model if escape of high-energy gamma rays is taken into account. The full bolometric lightcurve from -53 to +399 days (with respect to peak) cannot be fit satisfactorily with the pair-instability models. An alternative model of interaction with a dense CSM produces a good fit to the data although this requires a very large mass (~ 13 M_sun) of hydrogen free CSM. The host galaxy is a compact dwarf (physical size ~ 1.9 kpc) and with M_g = -19.33 +/- 0.10, it is the brightest nearby SLSN Ic host discovered so far. The host is a low mass system (2.8 x 10^8 M_sun) with a star-formation rate (5.0 M_sun/year), which implies a very high specific star-formation rate (17.9 Gyr^-1). The remarkably strong nebular lines provide detections of the [O III] lambda 4363 and [O II] lambdalambda 7320,7330 auroral lines and an accurate oxygen abundance of 12 + log(O/H) = 8.05 +/- 0.09. We show here that they are at the extreme end of the metallicity distribution of dwarf galaxies and propose that low metallicity is a requirement to produce these rare and peculiar supernovae.
We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey (BOSS), this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of supernova (SN) host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Following our suggested scheme, there are a total of 1166 photometrically classified SNe Ia when using a flat redshift prior and 1126 SNe Ia when the host spectroscopic redshift is assumed. For 1024 (87.8%) candidates classified as likely SNe Ia without redshift information, we find that the classification is unchanged when adding the host galaxy redshift. Using photometry from SDSS imaging data and the host galaxy spectra, we also report host galaxy properties for use in future nalysis of SN astrophysics. Finally, we investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. When using the SALT2 light curve fitter, we find a 21% increase in the number of fits that converge when using the spectroscopic redshift. Without host galaxy redshifts, we find that SALT2 light curve fits are systematically biased towards lower photometric redshift estimates and redder colors in the limit of low signal-to-noise data. The general improvements in performance of the light curve fitter and the increased diversity of the host galaxy sample highlights the importance of host galaxy spectroscopy for current photometric SN surveys such as the Dark Energy Survey and future surveys such as the Large Synoptic Survey Telescope.
The likely outcome of a compact object merger event is a central black hole surrounded by a rapidly accreting torus of debris. This disk of debris is a rich source of element synthesis, the outcome of which is needed to predict electromagnetic counterparts of individual events and to understand the contribution of mergers to galactic chemical evolution. Here we study disk outflow nucleosynthesis in the context of a two-dimensional, time-dependent black hole-neutron star merger accretion disk model. We use two time snapshots from this model to examine the impact of the evolution of the neutrino fluxes from the disk on the element synthesis. While the neutrino fluxes from the early-time disk snapshot appear to favor neutron-rich outflows, by the late-time snapshot the situation is reversed. As a result we find copious production of Nickel-56 in the outflows.
We study SN 2006oz, a newly-recognized member of the class of H-poor, super-luminous supernovae. We present multi-color light curves from the SDSS-II SN Survey, that cover the rise time, as well as an optical spectrum that shows that the explosion occurred at z~0.376. We fitted black body functions to estimate the temperature and radius evolution of the photosphere and used the parametrized code SYNOW to model the spectrum. We constructed a bolometric light curve and compared it with explosion models. The very early light curves show a dip in the g- and r-bands and a possible initial cooling phase in the u-band before rising to maximum light. The bolometric light curve shows a precursor plateau with a duration of 6-10 days in the rest-frame. A lower limit of M_u < -21.5 can be placed on the absolute peak luminosity of the SN, while the rise time is constrained to be at least 29 days. During our observations, the emitting sphere doubled its radius to 2x10^15 cm, while the temperature remained hot at 15000 K. As for other similar SNe, the spectrum is best modeled with elements including O II and Mg II, while we tentatively suggest that Fe III might be present. We suggest that the precursor plateau might be related to a recombination wave in a circumstellar medium (CSM) and discuss whether this is a common property of all similar explosions. The subsequent rise can be equally well described by input from a magnetar or by ejecta-CSM interaction, but the models are not well constrained owing to the lack of post-maximum observations, and CSM interaction has difficulties accounting for the precursor plateau self-consistently. Radioactive decay is less likely to be the mechanism that powers the luminosity. The host galaxy, detected in deep imaging with the 10 m GTC, is a moderately young and star-forming, but not a starburst, galaxy. It has an absolute magnitude of M_g = -16.9.
The known host galaxies of short-hard gamma-ray bursts (GRBs) to date are characterized by low to moderate star-formation rates and a broad range of stellar masses. In this paper, we positionally associate the recent unambiguously short-hard Swift GRB 100206A with a disk galaxy at redshift z=0.4068 that is rapidly forming stars at a rate of ~30 M_sun/yr, almost an order of magnitude higher than any previously identified short GRB host. Using photometry from Gemini, Keck, PAIRITEL, and WISE, we show that the galaxy is very red (g-K = 4.3 AB mag), heavily obscured (A_V ~ 2 mag), and has the highest metallicity of any GRB host to date (12 + log[O/H]_KD02 = 9.2): it is a classical luminous infrared galaxy (LIRG), with L_IR ~ 4 x 10^11 L_sun. While these properties could be interpreted to support an association of this GRB with very recent star formation, modeling of the broadband spectral energy distribution also indicates that a substantial stellar mass of mostly older stars is present. The current specific star-formation rate is modest (specific SFR ~ 0.5 Gyr^-1), the current star-formation rate is not substantially elevated above its long-term average, and the host morphology shows no sign of recent merger activity. Our observations are therefore equally consistent with an older progenitor, similar to what is inferred for other short-hard GRBs. Given the precedent established by previous short GRB hosts and the significant fraction of the Universes stellar mass in LIRG-like systems at z >~0.3, an older progenitor represents the most likely origin of this event.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا