Do you want to publish a course? Click here

Searching for galactic sources in the Swift GRB catalog

103   0   0.0 ( 0 )
 Added by Juan Carlos Tello
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Since the early 1990s Gamma Ray Bursts have been accepted to be of extra-galactic origin due to the isotropic distribution observed by BATSE and the redshifts observed via absorption line spectroscopy. Nevertheless, upon further examination at least one case turned out to be of galactic origin. This particular event presented a Fast Rise, Exponential Decay (FRED) structure which leads us to believe that other FRED sources might also be Galactic. This study was set out to estimate the most probable degree of contamination by galactic sources that certain samples of FREDs have. In order to quantify the degree of anisotropy the average dipolar and quadripolar moments of each sample of GRBs with respect to the galactic plane were calculated. This was then compared to the probability distribution of simulated samples comprised of a combination of isotropically generated sources and galactic sources. We observe that the dipolar and quadripolar moments of the selected subsamples of FREDs are found more than two standard deviations outside those of random isotropically generated samples.The most probable degree of contamination by galactic sources for the FRED GRBs of the Swift catalog detected until February 2011 that do not have a known redshift is about 21 out of 77 sources which is roughly equal to 27%. Furthermore we observe, that by removing from this sample those bursts that may have any type of indirect redshift indicator and multiple peaks gives the most probable contamination increases up to 34% (17 out of 49 sources). It is probable that a high degree of contamination by galactic sources occurs among the single peak FREDs observed by Swift.



rate research

Read More

135 - R. Voss 2010
We study the populations of X-ray sources in the Milky Way in the 15-55 keV band using a deep survey with the BAT instrument aboard the Swift observatory. We present the logN-logS distributions of the various source types and we analyze their variability and spectra. For the low-mass X-ray binaries (LMXBs) and the high-mass X-ray binaries (HMXBs) we derive the luminosity functions to a limiting luminosity of L_X~7 times10^{34} erg s/s. Our results confirm the previously found flattening of the LMXB luminosity function below a luminosity of L_X~10^{37} erg s/s. The luminosity function of the HMXBs is found to be significantly flatter in the 15-55 keV band than in the 2-10 keV band. From the luminosity functions we estimate the ratios of the hard X-ray luminosity from HMXBs to the star-formation rate, and the LMXB luminosity to the stellar mass. We use these to estimate the X-ray emissivity in the local universe from X-ray binaries and show that it constitutes only a small fraction of the hard X-ray background.
The Fermi Large Area Telescope (Fermi-LAT) 3FHL catalog is the latest catalog of >10 GeV sources and will remain an important resource for the high-energy community for the foreseeable future. Therefore, it is crucial that this catalog is made complete by providing associations for most sources. In this paper, we present the results of the X-ray analysis of 38 3FHL sources. We found a single bright X-ray source in 20 fields, two sources each in two fields and none for the remaining 16. The analysis of the properties of the 22 3FHL fields with X-ray sources led us to believe that most (19/22) are of extra-galactic origin. A machine-learning algorithm was used to determine the source type and we find that 15 potential blazars are likely BL Lacertae objects (BL Lacs). This is consistent with the fact that BL Lacs are by far the most numerous population detected above >10 GeV in the 3FHL.
We searched for X-ray serendipitous sources in over 370 Swift-XRT fields centered on gamma ray bursts detected between 2004 and 2008 and observed with total exposures ranging from 10 ks to over 1 Ms. This defines the Swift Serendipitous Survey in deep XRT GRB fields, which is quite broad compared to existing surveys (~33 square degrees) and medium depth, with a faintest flux limit of 7.2e-16 erg cm^-2 s^-1 in the 0.5 to 2 keV energy range. The survey has a high degree of uniformity thanks to the stable point spread function and small vignetting correction factors of the XRT, moreover is completely random on the sky as GRBs explode in totally unrelated parts of the sky. In this paper we present the sample and the X-ray number counts of the high Galactic-latitude sample, estimated with high statistics over a wide flux range (i.e., 7.2e-16 to ~5e-13 erg cm^-2 s^-1 in the 0.5-2 keV band and 3.4e-15 to ~6e-13 erg cm^-2 s^-1 in the 2-10 keV band). We detect 9387 point-like sources, while 7071 point-like sources are found at high Galactic-latitudes (i.e. >=20 deg). The large number of detected sources resulting from the combination of large area and deep flux limits make this survey a new important tool for investigating the evolution of AGN. In particular, the large area permits finding rare high-luminosity objects like QSO2, which are poorly sampled by other surveys, adding precious information for the luminosity function bright end. The high Galactic-latitude logN-logS relation is well determined over all the flux coverage, and it is nicely consistent with previous results at 1 sigma confidence level. By the hard X-ray color analysis, we find that the Swift Serendipitous Survey in deep XRT GRB fields samples relatively unobscured and mildly obscured AGN, with a fraction of obscured sources of ~37% (~15%) in the 2-10 (0.3-3 keV) band.
A comprehensive study is given to short gamma-ray bursts (sGRBs) in the third Swift/BAT GRB Catalog from December 2004 to July 2019. We examine in details the temporal properties of the three components in the prompt gamma-ray emission phase, including precursors, main peaks and extended emissions (EE). We investigate the similarity of the main peaks between one-component and two-component sGRBs. It is found that there is no substantial difference among their main peaks. Importantly, comparisons are made between in the single-peaked sGRBs and the double-peaked sGRBs. It is found that our results of main peaks in Swift/BAT sGRBs are essentially consistent with those in CGRO/BATSE ones recently found in our paper I. Interestingly, we suspect, besides the newly-found MODE I/II evolution forms of pulses in BATSE sGRBs in paper I, that there would have more evolution modes of pulses across differently adjacent energy channels in view of the Swift/BAT observations. We further inspect the correlation of the main peaks with either the precursors or the EEs. We find that the main peaks tend to last longer than the precursors but shorter than the EEs. In particular, we verify the power-law correlations related with peak fluxes of the three components, strongly suggesting that they are produced from the similar central engine activities. Especially, we compare the temporal properties of GRB 170817A with other sGRBs with EE and find no obvious differences between them.
We present the first Swift Ultra-Violet/Optical Telescope (UVOT) gamma-ray burst (GRB) afterglow catalog. The catalog contains data from over 64,000 independent UVOT image observations of 229 GRBs first detected by Swift, the High Energy Transient Explorer 2 (HETE2), the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), and the Interplanetary Network (IPN). The catalog covers GRBs occurring during the period from 2005 Jan 17 to 2007 Jun 16 and includes ~86% of the bursts detected by the Swift Burst Alert Telescope (BAT). The catalog provides detailed burst positional, temporal, and photometric information extracted from each of the UVOT images. Positions for bursts detected at the 3-sigma-level are provided with a nominal accuracy, relative to the USNO-B1 catalog, of ~0.25 arcseconds. Photometry for each burst is given in three UV bands, three optical bands, and a white or open filter. Upper limits for magnitudes are reported for sources detected below 3-sigma. General properties of the burst sample and light curves, including the filter-dependent temporal slopes, are also provided. The majority of the UVOT light curves, for bursts detected at the 3-sigma-level, can be fit by a single power-law, with a median temporal slope (alpha) of 0.96, beginning several hundred seconds after the burst trigger and ending at ~1x10^5 s. The median UVOT v-band (~5500 Angstroms) magnitude at 2000 s for a sample of well detected bursts is 18.02. The UVOT flux interpolated to 2000 s after the burst, shows relatively strong correlations with both the prompt Swift BAT fluence, and the Swift X-ray flux at 11 hours after the trigger.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا