No Arabic abstract
We report the discovery and confirmation of a transiting circumbinary planet (PH1b) around KIC 4862625, an eclipsing binary in the Kepler field. The planet was discovered by volunteers searching the first six Quarters of publicly available Kepler data as part of the Planet Hunters citizen science project. Transits of the planet across the larger and brighter of the eclipsing stars are detectable by visual inspection every ~137 days, with seven transits identified in Quarters 1-11. The physical and orbital parameters of both the host stars and planet were obtained via a photometric-dynamical model, simultaneously fitting both the measured radial velocities and the Kepler light curve of KIC 4862625. The 6.18 +/- 0.17 Earth radii planet orbits outside the 20-day orbit of an eclipsing binary consisting of an F dwarf (1.734 +/- 0.044 Solar radii, 1.528 +/- 0.087 Solar masses) and M dwarf (0.378+/- 0.023 Solar radii, 0.408 +/- 0.024 Solar masses). For the planet, we find an upper mass limit of 169 Earth masses (0.531 Jupiter masses) at the 99.7% confidence level. With a radius and mass less than that of Jupiter, PH1b is well within the planetary regime. Outside the planets orbit, at ~1000 AU,a previously unknown visual binary has been identified that is likely bound to the planetary system, making this the first known case of a quadruple star system with a transiting planet.
Of the nine confirmed transiting circumbinary planet systems, only Kepler-47 is known to contain more than one planet. Kepler-47 b (the inner planet) has an orbital period of 49.5 days and a radius of about $3,R_{oplus}$. Kepler-47 c (the outer planet) has an orbital period of 303.2 days and a radius of about $4.7,R_{oplus}$. Here we report the discovery of a third planet, Kepler-47 d (the middle planet), which has an orbital period of 187.4 days and a radius of about $7,R_{oplus}$. The presence of the middle planet allows us to place much better constraints on the masses of all three planets, where the $1sigma$ ranges are less than $26,M_{oplus}$, between $7-43,M_{oplus}$, and between $2-5,M_{oplus}$ for the inner, middle, and outer planets, respectively. The middle and outer planets have low bulk densities, with $rho_{rm middle} < 0.68$ g cm$^{-3}$ and $rho_{rm outer} < 0.26$ g cm$^{-3}$ at the $1sigma$ level. The two outer planets are tightly packed, assuming the nominal masses, meaning no other planet could stably orbit between them. All of the orbits have low eccentricities and are nearly coplanar, disfavoring violent scattering scenarios and suggesting gentle migration in the protoplanetary disk.
We report the detection of the first circumbinary planet found by TESS. The target, a known eclipsing binary, was observed in sectors 1 through 12 at 30-minute cadence and in sectors 4 through 12 at two-minute cadence. It consists of two stars with masses of 1.1 MSun and 0.3 MSun on a slightly eccentric (0.16), 14.6-day orbit, producing prominent primary eclipses and shallow secondary eclipses. The planet has a radius of ~6.9 REarth and was observed to make three transits across the primary star of roughly equal depths (~0.2%) but different durations -- a common signature of transiting circumbinary planets. Its orbit is nearly circular (e ~ 0.09) with an orbital period of 95.2 days. The orbital planes of the binary and the planet are aligned to within ~1 degree. To obtain a complete solution for the system, we combined the TESS photometry with existing ground-based radial-velocity observations in a numerical photometric-dynamical model. The system demonstrates the discovery potential of TESS for circumbinary planets, and provides further understanding of the formation and evolution of planets orbiting close binary stars.
We report the discovery of a transiting, Rp = 4.347+/-0.099REarth, circumbinary planet (CBP) orbiting the Kepler K+M Eclipsing Binary (EB) system KIC 12351927 (Kepler-413) every ~66 days on an eccentric orbit with ap = 0.355+/-0.002AU, ep = 0.118+/-0.002. The two stars, with MA = 0.820+/-0.015MSun, RA = 0.776+/-0.009RSun and MB = 0.542+/-0.008MSun, RB = 0.484+/-0.024RSun respectively revolve around each other every 10.11615+/-0.00001 days on a nearly circular (eEB = 0.037+/-0.002) orbit. The orbital plane of the EB is slightly inclined to the line of sight (iEB = 87.33+/-0.06 degrees) while that of the planet is inclined by ~2.5 degrees to the binary plane at the reference epoch. Orbital precession with a period of ~11 years causes the inclination of the latter to the sky plane to continuously change. As a result, the planet often fails to transit the primary star at inferior conjunction, causing stretches of hundreds of days with no transits (corresponding to multiple planetary orbital periods). We predict that the next transit will not occur until 2020. The orbital configuration of the system places the planet slightly closer to its host stars than the inner edge of the extended habitable zone. Additionally, the orbital configuration of the system is such that the CBP may experience Cassini-States dynamics under the influence of the EB, in which the planets obliquity precesses with a rate comparable to its orbital precession. Depending on the angular precession frequency of the CBP, it could potentially undergo obliquity fluctuations of dozens of degrees (and complex seasonal cycles) on precession timescales.
We report on the discovery and validation of TOI 813b (TIC 55525572 b), a transiting exoplanet identified by citizen scientists in data from NASAs Transiting Exoplanet Survey Satellite (TESS) and the first planet discovered by the Planet Hunters TESS project. The host star is a bright (V = 10.3 mag) subgiant ($R_star=1.94,R_odot$, $M_star=1.32,M_odot$). It was observed almost continuously by TESS during its first year of operations, during which time four individual transit events were detected. The candidate passed all the standard light curve-based vetting checks, and ground-based follow-up spectroscopy and speckle imaging enabled us to place an upper limit of $2 M_{Jup}$ (99 % confidence) on the mass of the companion, and to statistically validate its planetary nature. Detailed modelling of the transits yields a period of $83.8911_{ - 0.0031 } ^ { + 0.0027 }$ days, a planet radius of $6.71 pm 0.38$ $R_{oplus}$, and a semi major axis of $0.423_{ - 0.037 } ^ { + 0.031 }$ AU. The planets orbital period combined with the evolved nature of the host star places this object in a relatively under-explored region of parameter space. We estimate that TOI-813b induces a reflex motion in its host star with a semi-amplitude of $sim6$ ms$^{-1}$, making this system a promising target to measure the mass of a relatively long-period transiting planet.
We present the discovery of KIC 9632895b, a 6.2 Earth-radius planet in a low-eccentricity, 240.5-day orbit about an eclipsing binary. The binary itself consists of a 0.93 and 0.194 solar mass pair of stars with an orbital period of 27.3 days. The plane of the planets orbit is rapidly precessing, and its inclination only becomes sufficiently aligned with the primary star in the latter portion of the Kepler data. Thus three transits are present in the latter half of the light curve, but none of the three conjunctions that occurred during the first half of the light curve produced transits. The precession period is ~103 years, and during that cycle, transits are visible only ~8% of the time. This has the important implication that for every system like KIC 9632895 that we detect, there are ~12 circumbinary systems that exist but are not currently exhibiting transits. The planets mass is too small to noticeably perturb the binary, consequently its mass is not measurable with these data; but our photodynamical model places a 1-sigma upper limit of 16 Earth masses. With a period 8.8 times that of the binary, the planet is well outside the dynamical instability zone. It does, however, lie within the habitable zone of the binary, and making it the third of ten Kepler circumbinary planets to do so.