Do you want to publish a course? Click here

High Pressure Gases in Hollow Core Photonic Crystal Fiber:A New Nonlinear Medium

141   0   0.0 ( 0 )
 Added by Mohiudeen Azhar
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The effective Kerr nonlinearity of hollow-core kagome-style photonic crystal fiber (PCF) filled with argon gas increases over 100 times when the pressure is increased from 1 to 150 bar, reaching 15 % of that of bulk silica glass, while the zero dispersion wavelength shifts from 300 to 900 nm. The group velocity dispersion of the system is uniquely pressure-tunable over a wide range while avoiding Raman scattering : absent in noble gases and having an extremely high optical damage threshold. As a result, detailed and well controlled studies of nonlinear effects can be performed, in both normal and anomalous dispersion regimes, using only a fixed-frequency pump laser. For example, the absence of Raman scattering permits clean observation, at high powers, of the interaction between a modulational instability side-band and a soliton created dispersive wave. Excellent agreement is obtained between numerical simulations and experimental results. The system has great potential for the realisation of reconfigurable supercontinuum sources, wavelength convertors and short-pulse laser systems.



rate research

Read More

Supercritical Xe at 293 K offers a Kerr nonlinearity that can exceed that of fused silica while being free of Raman scattering. It also has a much higher optical damage threshold and a transparency window that extends from the UV to the infrared. We report the observation of nonlinear phenomena, such as self-phase modulation, in hollow-core photonic crystal fiber filled with supercritical Xe. In the subcritical regime, intermodal four-wave-mixing resulted in the generation of UV light in the HE12 mode. The normal dispersion of the fiber at high pressures means that spectral broadening can clearly obtained without influence from soliton effects or material damage.
By performing quantum-noise-limited optical heterodyne detection, we observe polarization noise in light after propagation through a hollow-core photonic crystal fiber (PCF). We compare the noise spectrum to the one of a standard fiber and find an increase of noise even though the light is mainly transmitted in air in a hollow-core PCF. Combined with our simulation of the acoustic vibrational modes in the hollow-core PCF, we are offering an explanation for the polarization noise with a variation of guided acoustic wave Brillouin scattering (GAWBS). Here, instead of modulating the strain in the fiber core as in a solid core fiber, the acoustic vibrations in hollow-core PCF influence the effective refractive index by modulating the geometry of the photonic crystal structure. This induces polarization noise in the light guided by the photonic crystal structure.
74 - P. Roth , Y. Chen , M. C. Gunendi 2018
We report a series of experimental, analytical and numerical studies demonstrating strong circular dichroism in helically twisted hollow-core single-ring photonic crystal fiber (SR-PCF), formed by spinning the preform during fiber drawing. In the SR-PCFs studied, the hollow core is surrounded by a single ring of non-touching capillaries. Coupling between these capillaries results in the formation of helical Bloch modes carrying orbital angular momentum. In the twisted fiber, strong circular birefringence appears in the ring, so that when a core mode with a certain circular polarization state (say LC) phase-matches to the ring, the other (RC) is strongly dephased. If in addition the orbital angular momentum is the same in core and ring, and the polarization states are non-orthogonal (e.g., slightly elliptical), the LC core mode will experience high loss while the RC mode is efficiently transmitted. The result is a single-circular-polarization SR-PCF that acts as a circular polarizer over a certain wavelength range. Such fibers have many potential applications, for example, for generating circularly polarized light in gas-filled SR-PCF and realizing polarizing elements in the deep and vacuum ultraviolet.
We demonstrate that the phase-matched dispersive wave (DW) emission within the resonance band of a 25-cm-long gas-filled hollow-core photonic crystal fiber (HC-PCF) can be strongly enhanced by the photoionization effect of the pump pulse. In the experiments we observe that as the pulse energy increases, the pump pulse gradually shifts to shorter wavelengths due to soliton-plasma interactions. When the central wavelength of the blueshifting soliton is close to the resonance band of the HC-PCF, high-efficiency energy transfer from the pump light to the DW in the visible region can be obtained. During this DW emission process, we also observe that the spectral center of the DW gradually shifts to longer wavelengths leading to a slightly-increased DW bandwidth, which can be well explained as the consequence of phase-matched coupling between the pump pulse and the DW. In particular, at an input pulse energy of 6 uJ, the spectral ratio of the DW at the fiber output is measured to be as high as ~53% together with a conversion efficiency of ~19%. These experimental results, explained by numerical simulations, pave the way to high-brightness light sources based on high-efficiency frequency-upconversion processes in gas-filled HC-PCFs.
Gas-filled hollow-core photonic crystal fiber (PCF) is used for efficient nonlinear temporal compression of femtosecond laser pulses, two main schemes being direct soliton-effect self-compression, and spectral broadening followed by phase compensation. To obtain stable compressed pulses, it is crucial to avoid decoherence through modulational instability (MI) during spectral broadening. Here we show that changes in dispersion due to spectral anti-crossings between the fundamental core mode and core wall resonances in anti-resonant-guiding hollow-core PCF can strongly alter the MI gain spectrum, enabling MI-free pulse compression for optimized fiber designs. In addition, higher-order dispersion can introduce MI even when the pump pulses lie in the normal dispersion region.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا